The apolipoprotein E (APOE) epsilon4 allele is the best established genetic risk factor for late-onset Alzheimer's disease (LOAD). We conducted genome-wide surveys of 502,627 single-nucleotide polymorphisms (SNPs) to characterize and confirm other LOAD susceptibility genes. In epsilon4 carriers from neuropathologically verified discovery, neuropathologically verified replication, and clinically characterized replication cohorts of 1411 cases and controls, LOAD was associated with six SNPs from the GRB-associated binding protein 2 (GAB2) gene and a common haplotype encompassing the entire GAB2 gene. SNP rs2373115 (p = 9 x 10(-11)) was associated with an odds ratio of 4.06 (confidence interval 2.81-14.69), which interacts with APOE epsilon4 to further modify risk. GAB2 was overexpressed in pathologically vulnerable neurons; the Gab2 protein was detected in neurons, tangle-bearing neurons, and dystrophic neuritis; and interference with GAB2 gene expression increased tau phosphorylation. Our findings suggest that GAB2 modifies LOAD risk in APOE epsilon4 carriers and influences Alzheimer's neuropathology.
Alzheimer's disease (AD) is associated with regional reductions in fluorodeoxyglucose positron emission tomography (FDG PET) measurements of the cerebral metabolic rate for glucose, which may begin long before the onset of histopathological or clinical features, especially in carriers of a common AD susceptibility gene. Molecular evaluation of cells from metabolically affected brain regions could provide new information about the pathogenesis of AD and new targets at which to aim disease-slowing and prevention therapies. Data from a genome-wide transcriptomic study were used to compare the expression of 80 metabolically relevant nuclear genes from laser-capture microdissected non-tangle-bearing neurons from autopsy brains of AD cases and normal controls in posterior cingulate cortex, which is metabolically affected in the earliest stages; other brain regions metabolically affected in PET studies of AD or normal aging; and visual cortex, which is relatively spared. Compared with controls, AD cases had significantly lower expression of 70% of the nuclear genes encoding subunits of the mitochondrial electron transport chain in posterior cingulate cortex, 65% of those in the middle temporal gyrus, 61% of those in hippocampal CA1, 23% of those in entorhinal cortex, 16% of those in visual cortex, and 5% of those in the superior frontal gyrus. Western blots confirmed underexpression of those complex I-V subunits assessed at the protein level. Cerebral metabolic rate for glucose abnormalities in FDG PET studies of AD may be associated with reduced neuronal expression of nuclear genes encoding subunits of the mitochondrial electron transport chain.gene expression ͉ Affymetrix microarrays ͉ laser capture micro-dissection A lzheimer's disease (AD) is associated with characteristic and progressive reductions in regional positron emission tomography (PET) measurements of the cerebral metabolic rate for glucose (CMRgl). These CMRgl reductions have been reported in the posterior cingulate, parietal, and temporal cortex, and in the frontal cortex and whole brain in more severely affected patients (1-5). Other studies have reported CMRgl reductions in anatomically well characterized hippocampal and entorhinal cortical regions of interest (6-10). The posterior cingulate cortex (PCC) and the neighboring precuneus are metabolically affected in the earliest clinical and preclinical stages of AD (4, 11), and the primary visual cortex is relatively spared (4, 11). In an ongoing series of studies, we have detected CMRgl reductions in cognitively normal carriers of the apolipoprotein E (APOE) 4 allele (11-15), a common late-onset AD susceptibility gene (16)(17)(18). CMRgl reductions in AD-affected areas were correlated with APOE 4 gene dose (i.e., three levels of genetic risk for AD) and were progressive in late-middle-aged persons (19). These reductions were also apparent in young adult APOE 4 heterozygotes (13), more than four decades before the anticipated median onset of dementia, years before the expected onset of the major histopa...
To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
The major pathway of mRNA degradation in yeast occurs through deadenylation, decapping and subsequent 5' to 3' exonucleolytic decay of the transcript body. To identify proteins that control the activity of the decapping enzyme, which is encoded by the DCP1 gene, we isolated a high-copy suppressor of the temperature-sensitive dcp1-2 allele, termed DCP2. Overexpression of Dcp2p partially suppressed the dcp1-2 decapping defect. Moreover, the Dcp2 protein was required for the decapping of both normal mRNAs and aberrant transcripts that are degraded by the mRNA surveillance pathway. The Dcp2 protein contains a MutT motif, which is found in a class of pyrophosphatases. Mutational analyses indicated that the region of Dcp2p containing the MutT motif is necessary and sufficient for Dcp2p's function in mRNA decapping. The Dcp2p also coimmunoprecipitates with the DCP1 decapping enzyme and is required for the production of enzymatically active decapping enzyme. These results suggest that direct or indirect interaction of Dcp1p with Dcp2p is required for the production of active decapping enzyme, perhaps in a process requiring the hydrolysis of a pyrophosphate bond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.