In this paper, we have used a newly developed immunocapture and LC-MS method to demonstrate for the first time the presence of protein isoforms 1 and 3 of the small cell lung cancer (SCLC) marker progastrin-releasing peptide (ProGRP) in sera. In addition, the method allows for indirect determination of the relative presence of the other known isoform of ProGRP, also known as ProGRP isoform 2. This new method is able to determine total ProGRP as a marker in sera at clinically relevant levels and to differentiate between isoforms at the low-pM level through combining selective sample preparation by immunoextraction, tryptic digestion, and separation followed by detection with LC-SRM-MS of the signature peptides, NLLGLIEAK (total ProGRP), LSAPGSQR (ProGRP isoform 1), and DLVDSLLQVLNVK (ProGRP isoform 3), with accuracies ≤ 25% for lower limit of quantification (LLOQ) and precisions ≤ 33%. By analyzing serum samples from four patients diagnosed with SCLC using the here described new and fully validated method, the ability is shown to both determine total ProGRP concentration and to differentiate between ProGRP isoforms 1 and 3 in one single run. Quantification of various ProGRP isoforms in one single run may be helpful for further understanding of the underlying biochemical processes in SCLC and differentiation of small cell lung cancer.
The human chorionic gonadotropin (hCG) proteins constitute a diverse group of molecules that displays biomarker value in pregnancy detection and cancer diagnostics, as well as in doping analysis. For the quantification of hCGβ and qualitative differentiation between other hCG variants in a selective, sensitive, and reproducible manner, the targeted proteomics approach based on mass spectrometric (MS) selected reaction monitoring (SRM) detection was exploited. By optimizing immunoaffinity extraction using monoclonal antibodies coated to magnetic beads, access was granted for the MS to the low-abundance target proteins, ensuring proper sensitivity with limits of detection (LODs) of 2 and 5 IU/L, respectively, for urine and serum samples. Validation according to key elements and recommendations defined by the European Medicines Agency in Guideline on Validation of Bioanalytical Methods was performed. For both matrixes this demonstrated good within-day precision results (within 20% for the lowest concentration, and within 15% for the medium and high concentration), good accuracy results (within 15% for all concentrations), and proper linearity, >0.997 for serum and of 0.999 for urine, in the concentration range up to 5000 IU/L. The method's application in clinical diagnostics was tested on samples from a pregnant woman and from patients previously diagnosed with testicular cancer. For doping analysis, samples from one man having received injection of the hCG-containing pharmaceutical Pregnyl were analyzed. The method proved to be quantitatively accurate with indisputable identification specificity, reducing risks of false positive and false negative results. The successfully validated method advocates thus for more extended use of MS in routine analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.