When cells are cooled to temperatures above the freezing point of water at rates greater than a few degrees per minute, they sustain irreversible injury. Reduction of this "cold shock" damage could increase the survival of animals and plants at low environmental temperatures and improve the cryopreservation of plant and animal cells. Leakage of solutes across membranes, associated with thermotropic phase transitions in membrane lipids, is thought to be responsible, but this hypothesis has not been tested directly. Using Fourier transform infrared spectroscopy (FTIR), we measured the lipid phase transitions in intact, living sperm, the animal cell in which cold shock has been studied most extensively. A shift in the CH2 absorbance peaks indicates the transition from liquid-crystalline to gel phase. The phase transition in sperm membranes occurred at a lower temperature for a marine shrimp than for the pig. In each case, potassium leakage, which is a hallmark of cold shock damage, increased abruptly near the end of the phase transition. Human sperm are quite resistant to cold shock, and an abrupt lipid phase transition was not detected. This phase behavior is typical of membranes containing a high proportion of cholesterol, and human sperm have an unusually high sterol content. High cholesterol levels are known to stabilize membranes during cooling. Overall, the lipid phase behavior was consistent with the temperature range over which cooling was damaging for pig and shrimp sperm, and the with the extent of damage produced in pig and human sperm. This is the first direct evidence that cold shock results from lipid phase transitions in cell membranes.
The protein 4.1 family comprises a group of skeletal proteins structurally related to the erythroid membrane skeletal protein, 4.1R, that plays a critical role in determining the morphology and mechanical stability of the red cell plasma membrane. These proteins are characterized by the presence of three main conserved structural/functional domains. A 30-kDa
Sperm gain full ability to bind to the zona(e) pellucida(e) (ZP) during capacitation. Since lipid rafts are implicated in cell adhesion, we determined whether capacitated sperm lipid rafts had affinity for the ZP. We demonstrated that lipid rafts, isolated as low-density detergent resistant membranes (DRMs), from capacitated pig sperm had ability to bind to homologous ZP. This binding was dependent on pig ZPB glycoprotein, a major participant in sperm binding. Capacitated sperm DRMs were also enriched in the male germ cell specific sulfogalactosylglycerolipid (SGG), which contributed to DRMs-ZP binding. Furthermore, SGG may participate in the formation of sperm DRMs due to its interaction with cholesterol, an integral component of lipid rafts, as shown by infrared spectroscopic studies. Since sperm capacitation is associated with cholesterol efflux from the sperm membrane, we questioned whether the formation of DRMs was compromised in capacitated sperm. Our studies indeed revealed that capacitation induced increased levels of sperm DRMs, with an enhanced ZP affinity. These results corroborated the implication of lipid rafts and SGG in cell adhesion and strongly suggested that the enhanced ZP binding ability of capacitated sperm may be attributed to increased levels and a greater ZP affinity of lipid rafts in the sperm plasma membrane.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) allowed comprehensive analysis of various steroids detectable in plasma throughout equine gestation. Mares (nZ9) were bled serially until they foaled. Certain steroids dominated the profile at different stages of gestation, clearly defining key physiological and developmental transitions. The period (weeks 6-20) coincident with equine chorionic gonadotropic (eCG) stimulation of primary corpora lutea and subsequent formation of secondary luteal structures was defined by increased progesterone, 17OH-progesterone and androstenedione, all D4 steroids. The 5a-reduced metabolite of progesterone, dihydroprogesterone (DHP) paralleled progesterone secretion at less than half the concentration until week 12 of gestation when progesterone began to decline but DHP concentrations continued to increase. DHP exceeded progesterone concentrations by week 16, clearly defining the luteo-placental shift in pregnane synthesis from primarily ovarian to primarily placental. The period corresponding to the growth of fetal gonads was defined by increasing dehydroepiandrosterone and pregnenolone (D5 steroids) concentrations from week 14, peaking at week 34 and declining to term. Metabolites of DHP (including allopregnanolone) dominated the steroid profile in late gestation, some exceeding DHP by weeks 13 or 14 and near term by almost tenfold. Thus D4 steroids dominated during ovarian stimulation by eCG, inversion of the ratio of progesterone: DHP (increasing 5a-pregnanes) marked the luteo-placental shift, D5 steroids defined fetal gonadal growth and 5a-reduced metabolites of DHP dominated the steroid profile in mid-to late-gestation. Comprehensive LC-MS/MS steroid analysis provides opportunities to better monitor the physiology and the progress of equine pregnancies, including fetal development.
To investigate structure and function relations of a new member of the exchangeable apolipoprotein family that modulates plasma lipid levels, recombinant human apolipoprotein (apo) A-V was produced in Escherichia coli and isolated by a combination of nickel chelation affinity chromatography and reversed-phase HPLC. Antibodies directed against apoA-V were generated and employed in immunoblotting experiments. Anti-apoA-V IgG gave a strong response against recombinant apoA-V from E. coli and human apoA-V expressed in transgenic mice, but did not recognize human apoA-I or apoA-IV. In neutral-pH buffers, at concentrations of >0.1 mg/mL, isolated lipid-free apoA-V is poorly soluble. By contrast, apoA-V is soluble in 50 mM sodium citrate (pH 3.0). Far-UV circular dichroism analysis and spectral deconvolution reveal that apoA-V possesses 32% α-helix, 33% β-sheet, 16% β-turn, and 18% random coil secondary structure conformers. Temperature-induced denaturation studies gave rise to a transition midpoint of 47.1 °C. Upon being cooled to ambient temperature from 85 °C, apoA-V failed to recover all of the negative ellipticity present in unheated apoA-V. ApoA-V interacts with bilayer vesicles of dimyristoylphosphatidylcholine to form discoidal complexes with diameters in the range of 15−20 nm. However, apoA-V was a poor activator of lecithin:cholesterol acyltransferase where the activity was 8.5 ± 1.8% of that of apoA-I. Furthermore, apoA-V failed to support enhanced efflux of cholesterol from cAMP-treated J774 macrophages, although low levels of efflux were obtained from unstimulated cells. Taken together, the results demonstrate recombinant apoA-V possesses unique structural and functional characteristics, in keeping with its proposed role in the modulation of plasma lipid levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.