Heterochromatin protein 1s (HP1s) are nonhistone chromosomal proteins that play a direct role in the formation and maintenance of heterochromatin structure. Similarly to Caenorhabditis elegans, silkworms possess holocentric chromosomes, in which diffused kinetochores extend along the length of each chromosome. We have isolated two silkworm HP1 homologues, BmHP1a and BmHP1b. Cytological analysis showed a unique localization of BmHP1s during cell division, in which these proteins first appear to dissociate from the chromosomes, but then return to enclose the chromosomes during metaphase. BmHP1s formed homo- and hetero-dimers and interacted with BmSu(var)3-9, which is a methyltransferase for histone H3 lysine 9 (H3K9). We further showed, using a silkworm cell-based reporter system, that BmHP1b had higher transcriptional repression activity than BmHP1a, whereas BmHP1a interacted more strongly with BmSu(var)3-9 than did BmHP1b. These results suggest that silkworm HP1a and HP1b may play different roles in heterochromatin formation in holocentric silkworm chromosomes.
Production of chemicals directly from carbon dioxide using light energy is an attractive option for a sustainable future. The 1,3-propanediol (1,3-PDO) production directly from carbon dioxide was achieved by engineered Synechococcus elongatus PCC 7942 with a synthetic metabolic pathway. Glycerol dehydratase catalyzing the conversion of glycerol to 3-hydroxypropionaldehyde in a coenzyme B12-dependent manner worked in S. elongatus PCC 7942 without addition of vitamin B12, suggesting that the intrinsic pseudovitamin B12 served as a substitute of coenzyme B12. The highest titers of 1,3-PDO (3.79±0.23 mM; 288±17.7 mg/L) and glycerol (12.62±1.55 mM; 1.16±0.14 g/L), precursor of 1,3-PDO, were reached after 14 days of culture under optimized conditions in this study.
Abstract:The telomere structures in Bombyx mori are thought to be maintained mainly by the transposition of the specialized telomeric retroelements SART and TRAS. The silkworm genome has telomeric TTAGG repeats and telomerase, but this telomerase displays little or no activity. Here, we report that the transcription of the telomeric retroelements SART1 and TRAS1 is suppressed by the silkworm Piwi subfamily proteins BmAgo3 and Siwi. The silkworm Piwi subfamily was found to be expressed predominantly in the gonads and early embryo, as in other model organisms, but in BmN4 cultured cells, these proteins formed granules that were separate from the nuage, which is a different behaviour pattern. The expression of TRAS1 was increased in BmN4 cells when BmAgo3 or Siwi were silenced by RNAi. Our results suggest that B. mori Piwi proteins are involved in regulating the transposition of telomeric retroelements, and that the functional piRNA pathway is conserved in BmN4 cultured cells.
Polycomb group (PcG) proteins are involved in chromatin modifications for maintaining gene repression that play important roles in the regulation of gene expression, tumorigenesis, chromosome X-inactivation, and genomic imprinting in Drosophila melanogaster, mammals, and even plants. To characterize the orthologs of PcG genes in the silkworm, Bombyx mori, 13 candidates were identified from the updated silkworm genome sequence by using the fruit fly PcG genes as queries. Comparison of the silkworm PcG proteins with those from other insect species revealed that the insect PcG proteins shared high sequence similarity. High-level expressions of all the silkworm PcG genes were maintained through day 2 to day 7 of embryogenesis, and tissue microarray data on day 3 of the fifth instar larvae showed that their expression levels were relatively low in somatic tissues, except for Enhancer of zeste (E(Z)). In addition, knockdown of each PRC2 component, such as E(Z), Extra sex combs (ESC), and Suppressor of zeste 12 (SU(Z)12), considerably decreased the global levels of H3K27me3 but not of H3K27me2. Taken together, these results suggest that insect PcG proteins are highly conserved during evolution and might play similar roles in embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.