Urinary tract infection (UTI) is a common complication in patients with urolithiasis. This study aimed to compare clinical manifestations and treatment outcomes among UTI patients with or without urolithiasis. It also focused on identifying relationships among urolithiasis, uroseptic shock, and acute kidney injury (AKI). This retrospective study enrolled hospitalized UTI patients who underwent imaging in an acute care setting from January 2006 to March 2015. Of 662 participants enrolled, 113 (17.1%) had urolithiasis, 107 (16.2%) developed uroseptic shock, and 184 (27.8%) developed AKI. A multivariate logistic regression analysis showed that in UTI patients, urolithiasis is associated with an increased risk of uroseptic shock (OR 1.80, 95% CI: 1.08–3.02, P = 0.025), AKI (OR 1.95, 95% CI: 1.22–3.12, P = 0.005), and bacteremia (OR 1.68, 95% CI: 1.08–2.64, P = 0.022). Urolithiasis is common in UTI patients and is associated with an increased risk of uroseptic shock and AKI.
Short noncoding endogenous RNAs, including microRNAs (miRNAs), are associated with the development and metastasis of multiple cancers. Epigallocatechin gallate (EGCG), the most active and abundant polyphenol in green tea, plays a crucial role in the modulation of miRNA expression, which is related to changes in cancer progression. In the present study, we explore whether EGCG exerts its suppressive effects on nasopharyngeal carcinoma (NPC) cells through miRNA regulation. The anoikis-resistant sphere-forming NPC cells grown under anchorage-independent conditions exhibit enhanced migratory properties, which were inhibited by EGCG treatment. The miR-296 level was lower in the anoikis-resistant cells than in the monolayer parental cells; however, miR-296 was significantly upregulated after EGCG treatment. We demonstrate that miR-296 is involved in the inhibitory effects of EGCG on the anoikis-resistant NPC cells through the downregulation of signal transducer and activator of transcription 3 (STAT3) activation. Our study is the first to demonstrate that EGCG inhibited the migratory properties of anoikis-resistant cells by modulating the expression of miRNA in NPC cells. Our results indicate the novel effects of EGCG on miRNA regulation to inhibit an invasive phenotype of NPC as well as the regulatory role of miR-296.
BackgroundUrolithiasis is a common cause of urinary tract obstruction and urinary tract infection (UTI). This study aimed to identify whether urolithiasis with or without hydronephrosis has an impact on acute kidney injury (AKI) in patients with UTI.Methods and findingsThis retrospective study enrolled hospitalized UTI patients who underwent imaging in an acute care setting from January 2006 to April 2019. Of the 1113 participants enrolled, 191 (17.2%) had urolithiasis and 76 (6.8%) had ureteral stone complicated with hydronephrosis. Multivariate logistic regression analysis showed that in UTI patients with urolithiasis, the presence of ureteral stone with concomitant hydronephrosis was an independent risk factor for AKI (odds ratio [OR] 2.345, 95% confidence interval [CI] 1.128–4.876, P = 0.023). In addition, urolithiasis was associated with an increased risk for AKI (OR 2.484, 95% CI 1.398–4.415, P = 0.002) in UTI patients without hydronephrosis.ConclusionThe presence of ureteral stone with hydronephrosis increases the risk for AKI of UTI patients with urolithiasis, and urolithiasis remains a risk factor of AKI in UTI patients without hydronephrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.