Background SIR2 is an NAD+-dependent deacetylase [1]–[3] implicated in the regulation of lifespan in species as diverse as yeast [4], worms [5], and flies [6]. We previously reported that the level of SIRT1, the mammalian homologue of SIR2 [7], [8], is coupled to the level of mitotic activity in cells both in vitro and in vivo [9]. Cells from long-lived mice maintained SIRT1 levels of young mice in tissues that undergo continuous cell replacement by proliferating stem cells. Changes in SIRT1 protein level were not associated with changes in mRNA level, suggesting that SIRT1 could be regulated post-transcriptionally. However, other than a recent report on sumoylation [10] and identification of SIRT1 as a nuclear phospho-protein by mass spectrometry [11], post-translational modifications of this important protein have not been reported.Methodology/Principal FindingsWe identified 13 residues in SIRT1 that are phosphorylated in vivo using mass spectrometry. Dephosphorylation by phosphatases in vitro resulted in decreased NAD+-dependent deacetylase activity. We identified cyclinB/Cdk1 as a cell cycle-dependent kinase that forms a complex with and phosphorylates SIRT1. Mutation of two residues phosphorylated by Cyclin B/Cdk1 (threonine 530 and serine 540) disturbs normal cell cycle progression and fails to rescue proliferation defects in SIRT1-deficient cells [12], [13].Conclusions/SignificancePharmacological manipulation of SIRT1 activity is currently being tested as a means of extending lifespan in mammals. Treatment of obese mice with resveratrol, a pharmacological activator of SIRT1, modestly but significantly improved longevity and, perhaps more importantly, offered some protection against the development of type 2 diabetes mellitus and metabolic syndrome [14]–[16]. Understanding the endogenous mechanisms that regulate the level and activity of SIRT1, therefore, has obvious relevance to human health and disease. Our results identify phosphorylation by cell cycle dependent kinases as a major mechanism controlling the level and function of this sirtuin and complement recent reports of factors that inhibit [17], [18] and activate [19] SIRT1 by protein-protein interactions.
SummarySir2 is an NAD + -dependent deacetylase that regulates lifespan in yeast, worms and flies. The mammalian orthologs of Sir2 include SIRT1 in humans and mice. In this study, we analyzed the level of SIRT1 in human lung fibroblasts (IMR90) and mouse embryonic fibroblasts (MEFs) from mice with normal, accelerated, and delayed aging. SIRT1 protein, but not mRNA, decreased significantly with serial cell passage in both human and murine cells. Mouse SIRT1 decreased rapidly in prematurely senescent (p44 Tg) MEFs, remained high in MEFs with delayed senescence (Igf-1r-/-), and was inversely correlated with senescence-activated β β β β -galactosidase (SA-β β β β Gal) activity. Reacquisition of mitotic capability following spontaneous immortalization of serially passaged wildtype MEFs restored the level of SIRT1 to that of early passage, highly proliferative MEFs. In mouse and human fibroblasts, we found a significant positive correlation between the levels of SIRT1 and proliferating cell nuclear antigen (PCNA), a DNA processing factor expressed during S-phase. In the animal, we found that SIRT1 decreased with age in tissues in which mitotic activity also declines, such as the thymus and testis, but not in tissues such as the brain in which there is little change in mitotic activity throughout life. Again, the decreases in SIRT1 were highly correlated with decreases in PCNA. Finally, loss of SIRT1 with age was accelerated in mice with accelerated aging but was not observed in long-lived growth hormonereceptor knockout mice. Thus, as mitotic activity ceases in mouse and human cells in the normal environment of the animal or in the culture dish, there is a concomitant decline in the level of SIRT1.
one morphogenetic protein (BMP) adenoviral vectors for the induction of osteogenesis are being developed for the treatment of bone pathology. However, it is still unknown which BMP adenoviral vector has the highest potential to stimulate bone formation in vivo. In this study, the osteogenic activities of recombinant human BMP-2, BMP-4, BMP-6, BMP-7, and BMP-9 adenoviruses were compared in vitro, in athymic nude rats, and in Sprague-Dawley rats. In vitro osteogenic activity was assessed by measuring the alkaline phosphatase activity in C2C12 cells transduced by the various BMP vectors. The alkaline phosphatase activity induced by 2 Â 10 5 PFU/well of BMP viral vector was 4890 Â 10 À12 U/well for ADCMVBMP-9, 302 Â 10 À12 U/well for ADCMVBMP-4, 220 Â 10 À12 U/well for ADCMVBMP-6, 45 Â 10 À12 U/well for ADCMVBMP-2, and 0.43 Â 10 À12 U/ well for ADCMVBMP-7. The average volume of new bone induced by 10 7 PFU of BMP vector in athymic nude rats was 0.3770.03 cm 3 for ADCMVBMP-2, 0.8970.07 cm 3 for ADCMVBMP-4, 1.0270.07 cm 3 for ADCMVBMP-6, 0.2470.05 cm 3 for ADCMVBMP-7, and 0.6370.07 cm 3 for ADCMVBMP-9. In immunocompetent Sprague-Dawley rats, no bone formation was demonstrated in the ADCMVBMP-2, ADCMVBMP-4, and ADCMVBMP-7 groups. ADCMVBMP-6 at a viral dose of 10 8 PFU induced 0.1070.03 cm 3 of new bone, whereas ADCMVBMP-9 at a lower viral dose of 10 7 PFU induced more bone, with an average volume of 0.2970.01 cm 3 .
Aims/hypothesisObesity is associated with ageing and increased energy intake, while restriction of energy intake improves health and longevity in multiple organisms; the NAD+-dependent deacetylase sirtuin 1 (SIRT1) is implicated in this process. Pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons in the arcuate nucleus (ARC) of the hypothalamus are critical for energy balance regulation, and the level of SIRT1 protein decreases with age in the ARC. In the current study we tested whether conditional Sirt1 overexpression in mouse POMC or AgRP neurons prevents age-associated weight gain and diet-induced obesity.MethodsWe targeted Sirt1 cDNA sequence into the Rosa26 locus and generated conditional Sirt1 knock-in mice. These mice were crossed with mice harbouring either Pomc-Cre or Agrp-Cre and the metabolic variables, food intake, energy expenditure and sympathetic activity in adipose tissue of the resultant mice were analysed. We also used a hypothalamic cell line to investigate the molecular mechanism by which Sirt1 overexpression modulates leptin signalling.ResultsConditional Sirt1 overexpression in mouse POMC or AgRP neurons prevented age-associated weight gain; overexpression in POMC neurons stimulated energy expenditure via increased sympathetic activity in adipose tissue, whereas overexpression in AgRP neurons suppressed food intake. SIRT1 improved leptin sensitivity in hypothalamic neurons in vitro and in vivo by downregulating protein-tyrosine phosphatase 1B, T cell protein-tyrosine phosphatase and suppressor of cytokine signalling 3. However, these phenotypes were absent in mice consuming a high-fat, high-sucrose diet due to decreases in ARC SIRT1 protein and hypothalamic NAD+ levels.Conclusions/interpretationARC SIRT1 is a negative regulator of energy balance, and decline in ARC SIRT1 function contributes to disruption of energy homeostasis by ageing and diet-induced obesity.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-013-3140-5) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
BackgroundSweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells.Methodology/Principal FindingsIn undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects.Conclusions3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.