This work presents Integer Programming (IP) techniques to tackle the problem of the International Nurse Rostering Competition. Starting from a compact and monolithic formulation in which the current generation of solvers performs poorly, improved cut generation strategies and primal heuristics are proposed and evaluated. A large number of computational experiments with these techniques produced the following results: the optimality of the vast majority of instances was proved, the best known solutions were improved by up to 15% and strong dual bounds were obtained. In the spirit of reproducible science, all code was implemented using the Computational Infrastructure for Operations Research (COIN-OR).
This work addresses the unrelated parallel machine scheduling problem with sequence‐dependent setup times, in which a set of jobs must be scheduled for execution by one of the several available machines. Each job has a machine‐dependent processing time. Furthermore, given multiple jobs, there are additional setup times, which vary based on the sequence and machine employed. The objective is to minimize the schedule's completion time (makespan). The problem is NP‐hard and of significant practical relevance. The present paper investigates the performance of four different stochastic local search (SLS) methods designed for solving the particular scheduling problem: simulated annealing, iterated local search, late acceptance hill‐climbing, and step counting hill‐climbing. The analysis focuses on design questions, tuning effort, and optimization performance. Simple neighborhood structures are considered. All proposed SLS methods performed significantly better than two state‐of‐the‐art hybrid heuristics, especially for larger instances. Updated best‐known solutions were generated for 901 of the 1000 large benchmark instances considered, demonstrating that particular SLS methods are simple yet powerful alternatives to current approaches for addressing the problem. Implementations of the contributed algorithms have been made available to the research community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.