Oral squamous cell carcinoma (OSCC), one of the most deadliest malignancies in the world, is caused primarily by areca nut chewing in Southeast Asia. The mechanisms by which areca nut participates in OSCC tumorigenesis are not well understood. In this study, we investigated the effects of low dose long-term arecoline (10 μg/mL, 90-days), a major areca nut alkaloid, on enhancement cancer stemness of human oral epithelial (OE) cells. OE cells with chronic arecoline exposure resulted in increased ALDH1 population, CD44 positivity, stemness-related transcription factors (Oct4, Nanog, and Sox2), epithelial-mesenchymal transdifferentiation (EMT) traits, chemoresistance, migration/invasiveness/anchorage independent growth and in vivo tumor growth as compared to their untreated controls. Mechanistically, ectopic miR-145 over-expression in chronic arecoline-exposed OE (AOE) cells inhibited the cancer stemness and xenografic. In AOE cells, luciferase reporter assays further revealed that miR-145 directly targets the 3′ UTR regions of Oct4 and Sox2 and overexpression of Sox2/Oct4 effectively reversed miR-145-regulated cancer stemness-associated phenomenas. Additionally, clinical results further revealed that Sox2 and Oct4 expression was inversely correlated with miR-145 in the tissues of areca quid chewing-associated OSCC patients. This study hence attempts to provide novel insight into areca nut-induced oral carcinogenesis and new intervention for the treatment of OSCC patients, especially in areca nut users.
These findings revealed the significance of let-7c in the contribution of oral cancer stemness and radio/chemoresistance. Targeting let-7c and its downstream IL-8 may be beneficial to prevent cancer recurrence and metastasis of oral squamous cell carcinoma.
Cancer stem cells (CSCs) have been identified to exert tumor-initiating ability, resulting in the recurrence, metastasis and chemoresistance of oral squamous cell carcinomas. In the present study, we showed that GMI, an immunomodulatory protein from Ganoderma microsporum, induc ed a cytotoxic effect in oral carcinomas stem cells (OCSCs). Treatment of GMI dose-dependently inhibited the expression of CSC markers, including ALDH1 activity and CD44 positivity. Moreover, GMI suppressed the self-renewal property, colony formation, migration, and invasion abilities as well as potentiated chemo-sensitivity in OCSCs. Our results suggested that the tumor suppressive effect of GMI was mediated through inhibition of IL-6/Stat3 signaling pathway. Furthermore, tumor growth was reduced in mice bearing xenograft tumors after oral administration of GMI. Taken together, we demonstrated the anti-CSC effect of GMI in oral cancer and GMI may serve as a natural cisplatin adjuvant to prevent cancer recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.