Retinal gene therapy has shown great promise in treating retinitis pigmentosa (RP), a primary photoreceptor degeneration that leads to severe sight loss in young people 1 , 2 , 3 , 4 , 5 , 6 . Here we report the first in human Phase I/II dose escalation clinical trial for X-linked RP caused by mutations in the RP GTPase regulator (RPGR) gene 7 in 18 patients up to 6 months follow-up ( Clinicaltrials.gov : NCT03116113). The primary outcome of the study was safety and secondary outcomes included visual acuity, microperimetry and central retinal thickness. Apart from steroid-responsive subretinal inflammation in patients at the higher doses, there were no significant safety concerns following subretinal delivery of an adeno-associated viral vector encoding codon-optimized human RPGR (AAV8. coRPGR ) 8 meeting the pre-specified primary endpoint. Visual field improvements beginning at one month and maintained to the last point of follow-up were observed in six patients.
Global genome analysis reveals a vast and dynamic anellovirus landscape within the human virome Graphical abstract Highlights d Anellovirus genomes assembled from longitudinal bloodtransfusion cohorts d Co-infections are common, with a median of six anellovirus lineages per subject d Transmitted anellovirus lineages were observed up to 260 days post-transfusion d Recombination is a key driver in anellovirus genomic diversification
Inherited retinal diseases (IRDs) are a group of rare, heterogenous eye disorders caused by gene mutations that result in degeneration of the retina. There are currently limited treatment options for IRDs; however, retinal gene therapy holds great promise for the treatment of different forms of inherited blindness. One such IRD for which gene therapy has shown positive initial results is choroideremia, a rare, X-linked degenerative disorder of the retina and choroid. Mutation of the CHM gene leads to an absence of functional Rab escort protein 1 (REP1), which causes retinal pigment epithelium cell death and photoreceptor degeneration. The condition presents in childhood as night blindness, followed by progressive constriction of visual fields, generally leading to vision loss in early adulthood and total blindness thereafter. A recently developed adeno-associated virus-2 (AAV2) vector construct encoding REP1 (AAV2-REP1) has been shown to deliver a functional version of the CHM gene into the retinal pigment epithelium and photoreceptor cells. Phase 1 and 2 studies of AAV2-REP1 in patients with choroideremia have produced encouraging results, suggesting that it is possible not only to slow or stop the decline in vision following treatment with AAV2-REP1, but also to improve visual acuity in some patients.
The significant impact of the human virome on human physiology is beginning to emerge thanks to modern sequencing methods and bioinformatic tools. Anelloviruses, the principal constituent of the commensal human virome, are universally acquired in infancy and found throughout the body. Since the discovery of the original torque teno virus in 1997, three genera of the Anelloviridae family, each extremely diverse genetically, have been found in humans. These viruses elicit weak immune responses that permit multiple strains to co-exist and persist for years in a typical individual. However, because they do not cause disease and due to the lack of an in vitro culture system, anelloviruses remain poorly understood. Basic features of the virus, such as the identity of its structural protein, have been unclear until now. Here, we describe the first structure of an anellovirus particle, which includes a jelly roll domain that forms a 60-mer icosahedral particle core from which spike domains extend to form a salient part of the particle surface. The spike domains come together around the 5-fold symmetry axes to form crown-like features. Relatively conserved patches of amino acids are near the base of the spike domain while a hypervariable region is at the apex. We propose that this structure renders the particle less susceptible to antibody neutralization by hiding vulnerable conserved epitopes while exposing highly diverse epitopes as immunological decoys, thereby contributing to the immune evasion properties of anelloviruses. This would contrast with viruses such as beak and feather disease virus, canine parvovirus or adeno-associated virus which lack such pronounced surface features. These results shed light on the structure of anelloviruses and provide a framework to understand their interactions with the immune system.
Inherited retinal diseases (IRDs) are a diverse group of degenerative diseases of the retina that can lead to significant reduction in vision and blindness. Because of the considerable phenotypic overlap among IRDs, genetic testing is a critical step in obtaining a definitive diagnosis for affected individuals and enabling access to emerging gene therapy–based treatments and ongoing clinical studies. While advances in molecular diagnostic technologies have significantly improved the understanding of IRDs and identification of disease-causing variants, training in genetic diagnostics among ophthalmologists is limited. In this review, we will provide ophthalmologists with an overview of genetic testing for IRDs, including the types of available testing, variant interpretation, and genetic counseling. Additionally, we will discuss the clinical applications of genetic testing in the molecular diagnosis of IRDs through case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.