The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10 . The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depthintegrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.
This article (1) reviews and clarifies the basic physics underpinning finescale parameterizations of turbulent dissipation due to internal wave breaking and (2) provides advice on the implementation of the parameterizations in a way that is most consistent with the underlying physics, with due consideration given to common instrumental issues. Potential biases in the parameterization results are discussed in light of both (1) and (2), and illustrated with examples in the literature. The value of finescale parameterizations for studies of the large-scale ocean circulation in the presence of common biases is assessed. We conclude that the parameterizations can contribute significantly to the resolution of large-scale circulation problems associated with plausible ranges in the rates of turbulent dissipation and diapycnal mixing spanning an order of magnitude or more.
[1] The Indian Ocean hosts a vigorous basin-scale overturning that constitutes one of the major deep upwelling branches of the global meridional overturning circulation (MOC). The extent to which the deep Indian Ocean MOC is sustained by breaking internal waves is assessed by quantifying and comparing the energetics of the overturning and those of the regional internal wave field. A range of published inverse estimates of the circulation across 32 S is used to assess the basin average buoyancy fluxes. The turbulent dissipation needed to sustain the MOC ranges between 0.17 AE 0.04 and 1.19 AE 0.17 TW, which is consistent with the estimated 0.35 À0.26 +1.04 TW dissipated by breaking internal waves, as inferred from observed fine structure. Both estimates of turbulent dissipation are consistent with the total energy input into the regional internal wave field (0.21 À0.05 +0.08 TW) based on published estimates of energy conversion from winds, tides and geostrophic bottom flows. However, a discrepancy arises when comparing the energetics at different density levels. At mid-ocean density levels ($1000-3000 m) the dissipation of internal wave energy is found to be significantly smaller (factor 5-10) than the dissipation needed to sustain inverse estimates of the MOC. The uncertainty related to undersampling of internal wave breaking hot spots was analyzed and found to be small, which suggests that mixing processes other than wave breaking due to weak wave-wave interactions, may be significant in the deep Indian Ocean.
We present new results on an optical implementation of Grover's quantum search algorithm. This extends previous work in which the transverse spatial mode of a light beam oscillates between a broad initial input shape and a highly localized spike, which reveals the position of the tagged item. The spike reaches its maximum intensity after ∼ √ N round trips in a cavity equipped with two phase plates, where N is the ratio of the surface area of the original beam and the area of the phase spot or tagged item. In our redesigned experiment the search space is now two-dimensional. In the time domain we demonstrate for the first time a multiple item search where the items appear directly as bright spots on the images of a gated camera. In a complementary experiment we investigate the searching cavity in the frequency domain. The oscillatory nature of the search algorithm can be seen as a splitting of cavity eigenmodes, each of which concentrates up to 50% of its power in the bright spot corresponding to the solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.