Most existing knowledge about [Ca(2+)](i) signaling in vascular endothelium has been based on studies using endothelial cells cultured in vitro. To examine how endothelial cells behave in situ, we have developed a method to monitor single-cell [Ca(2+)](i) from Fura-2-loaded rat aortic segments. Fluorescence ratio images from large numbers of endothelial cells were acquired by using a flow chamber mounted on a dual-wavelength fluorescence microscope. Our results showed that either acetylcholine or histamine reversibly activated the vascular endothelium by eliciting M(3) or H(1) receptor-mediated [Ca(2+)](i) increases, respectively. The acetylcholine-evoked endothelial [Ca(2+)](i) elevation at the branch site (intercostal orifice) was much more pronounced than that at the non-branch area. However, endothelium at the branch site was relatively insensitive to histamine. Both acetylcholine-sensitive and histamine-sensitive endothelial cells were arranged in belts aligned along flow lines and were intercalated with each other. Data analyzed from 400 endothelial cells located at the non-branch site showed drastically heterogeneous [Ca(2+)](i) responses to a fixed concentration of either acetylcholine or histamine, differing by two orders of magnitude in individual cells. As a conclusion, vascular endothelial cells appear to have their own characteristic [Ca(2+)](i) 'fingerprint' to various agonists and they may function coordinately in situ.
Chronic exercise enhances endothelium-dependent vasodilating responses. To investigate whether this is due to a change in endothelial Ca(2+) signaling, we examined intracellular Ca(2+) concentration ([Ca(2+)](i)) level in rat aortic endothelium in response to acetylcholine (ACh) or ATP. Four-week-old male Wistar rats were divided into control and exercise groups. The exercised animals ran on a treadmill at a moderate intensity for 60 min/day, 5 day/wk, for 10 wk. Rat aortas were then excised and loaded with fura 2. After the aortas were mounted on a flow chamber, these specimens were observed under an epifluorescence microscope equipped with ratio-imaging capability. Our results showed that 1) chronic exercise increased both ACh- and ATP-induced [Ca(2+)](i) responses; 2) ACh induced heterogeneous [Ca(2+)](i) elevation in individual endothelial cells; and 3) the exercise effect on ACh-evoked endothelial [Ca(2+)](i) elevation was inhibited by the Ca(2+) influx blocker SKF-96365, by a Ca(2+)-free buffer, or by high concentrations of extracellular K(+). We conclude that chronic exercise increases ACh-induced [Ca(2+)](i) elevation in rat aortic endothelium in situ, possibly by facilitating Ca(2+) influx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.