Remediation aimed at reducing human exposure to groundwater arsenic in West Bengal, one of the regions most impacted by this environmental hazard, are currently largely focussed on reducing arsenic in drinking water. Rice and cooking of rice, however, have also been identified as important or potentially important exposure routes. Quantifying the relative importance of these exposure routes is critically required to inform the prioritisation and selection of remediation strategies. The aim of our study, therefore, was to determine the relative contributions of drinking water, rice and cooking of rice to human exposure in three contrasting areas of West Bengal with different overall levels of exposure to arsenic, viz. high (Bhawangola-I Block, Murshidibad District), moderate (Chakdha Block, Nadia District) and low (Khejuri-I Block, Midnapur District). Arsenic exposure from water was highly variable, median exposures being 0.02 μg/kg/d (Midnapur), 0.77 μg/kg/d (Nadia) and 2.03 μg/kg/d (Murshidabad). In contrast arsenic exposure from cooked rice was relatively uniform, with median exposures being 0.30 μg/kg/d (Midnapur), 0.50 μg/kg/d (Nadia) and 0.84 μg/kg/d (Murshidabad). Cooking rice typically resulted in arsenic exposures of lower magnitude, indeed in Midnapur, median exposure from cooking was slightly negative. Water was the dominant route of exposure in Murshidabad, both water and rice were major exposure routes in Nadia, whereas rice was the dominant exposure route in Midnapur. Notwithstanding the differences in balance of exposure routes, median excess lifetime cancer risk for all the blocks were found to exceed the USEPA regulatory threshold target cancer risk level of 10(-4)-10(-6). The difference in balance of exposure routes indicate a difference in balance of remediation approaches in the three districts.
The emerging role of heparanase in tumor initiation, growth, metastasis, and chemoresistance is well recognized, encouraging the development of heparanase inhibitors as anticancer drugs. Unlike the function of heparanase in cancer cells, little attention has been given to heparanase contributed by cells composing the tumor microenvironment. Here, we focused on the cross-talk between macrophages, chemotherapy, and heparanase and the combined effect on tumor progression. Macrophages were markedly activated by chemotherapeutics paclitaxel and cisplatin, evidenced by increased expression of proinflammatory cytokines, supporting recent studies indicating that chemotherapy may promote rather than suppress tumor regrowth and spread. Strikingly, cytokine induction by chemotherapy was not observed in macrophages isolated from heparanase-knockout mice, suggesting macrophage activation by chemotherapy is heparanase dependent. paclitaxel-treated macrophages enhanced the growth of Lewis lung carcinoma tumors that was attenuated by a CXCR2 inhibitor. Mechanistically, paclitaxel and cisplatin activated methylation of histone H3 on lysine 4 (H3K4) in wild-type but not in heparanase-knockout macrophages. Furthermore, the H3K4 presenter WDR5 functioned as a molecular determinant that mediated cytokine induction by paclitaxel. This epigenetic, heparanasedependent host-response mechanism adds a new perspective to the tumor-promoting functions of chemotherapy, and offers new treatment modalities to optimize chemotherapeutics.Significance: Chemotherapy-treated macrophages are activated to produce proinflammatory cytokines, which are blunted in the absence of heparanase.
Theaflavins (TF) and thearubigins (TR) are the most exclusive polyphenols of black tea. Even though few previous reports showed the anticancer effects of TF through apoptosis, the potential effect of TR has not been appraised. This study investigated the induction of apoptosis in human skin cancer cells after treatment of TF and TR. We report that both TF and TR could exert inhibition of A431 (human epidermoid carcinoma) and A375 (human malignant melanoma) cell proliferation without adversely affecting normal human epidermal keratinocyte cells. Growth inhibition of A375 cells occurred through apoptosis, as evident from cell cycle arrest at G(0)/G(1) phase, increase in early apoptotic cells, externalization of phosphatidylserine and DNA fragmentation. In our pursuit to dissect the molecular mechanism of TF- and TR-induced apoptosis in A375 cells, we investigated whether cell death is being mediated by mitochondria. In our system, Bax translocation to mitochondria persuaded depolarization of mitochondrial membrane potential, cytochrome c release in cytosol and induced activation of caspase-9, caspase-3 and poly (ADP-ribose) polymerase cleavage. Our intricate investigations on apoptosis also explained that TF and TR augmented Bax:Bcl2 ratio, up-regulated the expression of p53 as well as p21 and inhibited phosphorylation of the cell survival protein Akt. Furthermore, TF and TR elicited intracellular reactive oxygen species generation in A375 cells. These observations raise speculations that TF as well as TR might exert chemopreventive effect through cell cycle arrest and induction of apoptogenic signals via mitochondrial death cascade in human skin cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.