The development of new artificial structures and materials is today one of the major research challenges in optics. In most studies so far, the design of such structures has been based on the judicious manipulation of their refractive index properties. Recently, the prospect of simultaneously using gain and loss was suggested as a new way of achieving optical behaviour that is at present unattainable with standard arrangements. What facilitated these quests is the recently developed notion of 'parity-time symmetry' in optical systems, which allows a controlled interplay between gain and loss. Here we report the experimental observation of light transport in large-scale temporal lattices that are parity-time symmetric. In addition, we demonstrate that periodic structures respecting this symmetry can act as unidirectional invisible media when operated near their exceptional points. Our experimental results represent a step in the application of concepts from parity-time symmetry to a new generation of multifunctional optical devices and networks.
We experimentally demonstrate an ultracompact PlasMOStor, a plasmon slot waveguide field-effect modulator based on a transparent conducting oxide active region. By electrically modulating the conducting oxide material deposited into the gaps of highly confined plasmonic slot waveguides, we demonstrate field-effect dynamics giving rise to modulation with high dynamic range (2.71 dB/μm) and low waveguide loss (∼0.45 dB/μm). The large modulation strength is due to the large change in complex dielectric function when the signal wavelength approaches the surface plasmon resonance in the voltage-tuned conducting oxide accumulation layer. The results provide insight about the design of ultracompact, nanoscale modulators for future integrated nanophotonic circuits.
We show that optical Bloch oscillations can emerge in waveguide arrays with linearly varying propagation constants. The existence of localized modes (Wannier-Stark states) with equidistant wave-number spacing (Wannier-Stark ladder) that do not undergo diffraction is analytically proved. The evolution of arbitrary initial excitations is described, and potential applications are suggested.
By using a nonlinear waveguide array we experimentally demonstrate dynamic features of solitons in discrete systems. Spatial solitons do not exhibit these properties in continuous systems. We experimentally recorded nonlinearly induced locking of an initially moving soliton at a single waveguide. We also show that discrete solitons can acquire transverse momentum and propagate at an angle with respect to the waveguide direction, when the initial excitation is not centered on a waveguide. This is to our knowledge the first time that the effect of the Peierls-Nabarro potential has been observed in a macroscopic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.