Whilst some studies have identified gender-specific differences, there is no consensus about gender-specific determinants for prevalence rates or concomitant symptoms of chronic tinnitus such as depression or anxiety. However, gender-associated differences in psychological response profiles and coping strategies may differentially affect tinnitus chronification and treatment success rates. Thus, understanding gender-associated differences may facilitate a more detailed identification of symptom profiles, heighten treatment response rates, and help to create access for vulnerable populations that are potentially less visible in clinical settings. Our research questions are: RQ1: how do male and female tinnitus patients differ regarding tinnitus-related distress, depression severity, and treatment response, RQ2: to what extent are answers to questionnaires administered at baseline associated with gender, and RQ3: which baseline questionnaire items are associated with tinnitus distress, depression, and treatment response, while relating to one gender only? In this work, we present a data analysis workflow to investigate gender-specific differences in N = 1,628 patients with chronic tinnitus (828 female, 800 male) who completed a 7-day multimodal treatment encompassing cognitive behavioral therapy (CBT), physiotherapy, auditory attention training, and information counseling components. For this purpose, we extracted 181 variables from 7 self-report questionnaires on socio-demographics, tinnitus-related distress, tinnitus frequency, loudness, localization, and quality as well as physical and mental health status. Our workflow comprises (i) training machine learning models, (ii) a comprehensive evaluation including hyperparameter optimization, and (iii) post-learning steps to identify predictive variables. We found that female patients reported higher levels of tinnitus-related distress, depression and response to treatment (RQ1). Female patients indicated higher levels of tension, stress, and psychological coping strategies rates. By contrast, male patients reported higher levels of bodily pain associated with chronic tinnitus whilst judging their overall health as better (RQ2). Variables measuring depression, sleep problems, tinnitus frequency, and loudness were associated with tinnitus-related distress in both genders and indicators of mental health and subjective stress were Niemann et al.Gender-Specific Differences in Patients With Chronic Tinnitus found to be associated with depression in both genders (RQ3). Our results suggest that gender-associated differences in symptomatology and treatment response profiles suggest clinical and conceptual needs for differential diagnostics, case conceptualization and treatment pathways.
Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease.
BackgroundChronic tinnitus is a complex condition that can be associated with considerable distress. Whilst cognitive-behavioral treatment (CBT) approaches have been shown to be effective, not all patients benefit from psychological or psychologically anchored multimodal therapies. Determinants of tinnitus-related distress thus provide valuable information about tinnitus characterization and therapy planning. OPEN ACCESS Citation: Niemann U, Boecking B, Brueggemann P, Mebus W, Mazurek B, Spiliopoulou M (2020) Tinnitus-related distress after multimodal treatment can be characterized using a key subset of baseline variables. PLoS ONE 15(1): e0228037. https://doi. ResultsThe best machine learning classifier (gradient boosted trees) can predict tinnitus-related distress in T1 with AUC = 0.890 using 26 features. Subjectively perceived tinnitus-related impairment, depressivity, sleep problems, physical health-related impairments in quality of life, time spent to complete questionnaires and educational level exhibited a high attribution towards model prediction. ConclusionsMachine learning can reliably identify baseline features recorded prior to treatment commencement that characterize tinnitus-related distress after treatment. The identification of key features can contribute to an improved understanding of multifactorial contributors to tinnitus-related distress and thereon based multimodal treatment strategies.Tinnitus-related distress after treatment can be characterized using only few baseline variables PLOS ONE | https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.