The demand for cayenne pepper in Indonesia tends to increase annually, but the productivity of cayenne pepper continues to decline and depends on the changing seasons. One of the factors that must be considered in the harvest of cayenne pepper is the level of maturity. This research aims to classify the maturity level of cayenne pepper using the extraction of color and texture features. The extraction of features based on the color is taken from the mean saturation value, while the extraction of feature-based textures uses the value of the Gray Level Co-Occurrence Matrix (GLCM) feature ASM (Angular Second Moment), contrast, IDM (Inverse Difference (Entropy) and correlation (Correlation) then using angles of 0 ° and 45 °. These features become input in the classification process using the Backpropagation method. The results of the system training are able to classify the level of maturity of cayenne pepper with an accuracy of 81.4% and an accuracy of the testing process of 74.2%. Permintaan cabai rawit di Indonesia cenderung meningkat setiap tahunnya, namun produktivitas cabai rawit terus menurun dan bergantung pada pergantian musim. Salah satu faktor yang harus diperhatikan dalam panen cabai rawit adalah tingkat kematangan. Penelitian ini bertujuan untuk melakukan klasifikasi tingkat kematangan cabai rawit menggunakan ekstraksi fitur warna dan tekstur. Ekstraksi fitur berdasarkan warna diambil dari nilai mean saturasi, sedangkan ekstraksi fitur berdasarkan tekstur menggunakan nilai fitur Gray Level Co-occurrence Matrix (GLCM) yaitu ASM (Angular Second Moment), Kontras (Contrast), IDM (Inverse Difference Momentum), Entropi (Entropy) dan Korelasi (Correlation) dan menggunakan sudut 0° dan 45°. Fitur-fitur tersebut menjadi masukan pada proses klasifikasi menggunakan metode Backpropagation. Hasil pelatihan sistem mampu mengklasifikasi tingkat kematangan cabai rawit dengan akurasi sebesar 81,4% dan akurasi proses pengujian cabai rawit sebesar 74,2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.