Using the quenched flow technique the mechanism of seryl tRNA synthetase action has been investigated with respect to the presteady state kinetics of individual steps. Under conditions where the strong binding sites of the enzyme are nearly saturated and the steady state turnover number is about 1 s-1, rate constants of four different processes have been determined: steps connected with substrate associations are relatively slow (12 s-1 for the entire process); activation of serine is the rate determining step (about 1.2 s-1 in presence of tRNASer); whereas the transfer of serine onto tRNASer (35 s-1) and the dissociation of seryl tRNASer (70 s-1) are fast. Similar kinetic parameter seem to hold also for the steady state reactions. This conclusion is based on a detailed study of the substrate, product, and Mg2+ concentration dependence of the transfer reaction. The results also indicate that a second serine binding site is operative. Since the transfer of serine from a preformed adenylate complex onto tRNASer is fast, seryl adenylate seems to be a kinetically competent intermediate of the aminoacylation reaction although, of course, alternative mechanisms cannot be excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.