The Chrysomelidae (Coleoptera) is a highly speciose family that has been poorly studied at the regional level in Mexico. In the present study, we estimated species richness and diversity in oak-pine forest, Tamaulipan thorny scrub and in tropical deciduous forests in Peregrina Canyon within the Altas Cumbres Protected Area of the northeastern state of Tamaulipas, Mexico. Sampling of Chrysomelidae consisted of five sweep net samples (200 net sweeps) within each of three sites during four sample periods: early dry season, late dry season, early wet season, and late wet season. Species were identified and total numbers per species were recorded for each sample. A total of 2,226 specimens were collected belonging to six subfamilies, 81 genera and 157 species of Chrysomelidae from the study area. Galerucinae was the most abundant subfamily with 1,828 specimens, representing 82.1% of total abundance in the study area. Lower abundance was recorded in Cassidinae (8.5%), Eumolpinae (3.6%), Cryptocephalinae (2.2%), Chrysomelinae (2.2%), and finally Criocerinae (1.3%). The highest species richness was also presented in the subfamily Galerucinae with 49% of the total obtained species followed by Cassidinae (20%), Cryptocephalinae (9.7%), Eumolpinae (9.7%), Chrysomelinae (6.5%) and Criocerinae (5.2%). The most common species were Centralaphthona fulvipennis Jacoby (412 individuals), Centralaphthona diversa (Baly) (248), Margaridisa sp.1 (219), Acallepitrix sp.1 (134), Longitarsus sp.1 (104), Heterispa vinula (Erichson) (91), Epitrix sp.1 (84) and Chaetocnema sp.1 (72). Twenty-two species were doubletons (1.97% of total abundance) and 52 were singletons (2.33%). The estimated overall density value obtained was 0.0037 individuals/m2. The greatest abundance and density of individuals were recorded at the lowest elevation site. However, alpha diversity increased with increasing altitude. Similarity values were less than 50% among the three sites indicating that each site had distinct species assemblages of Chrysomelidae. The highest abundance was obtained during the late dry season, whereas diversity indices were highest during the early wet season. The present work represents the first report of the altitudinal variation in richness, abundance, and diversity of Chrysomelidae in Mexico. These results highlight the importance of conservation of this heterogeneous habitat and establish baseline data for Chrysomelidae richness and diversity for the region.
Se realizó un inventario faunístico en el Cerro El Diente,Tamaulipas, para contribuir al conocimiento de la fauna de Chrysomelidae en México. El estudio se llevó a cabo entre marzo y septiembre de 2012; la colecta de los ejemplares se realizó en transectos altitudinales utilizando el método directo. En total se analizaron seis tipos de vegetación, en altitudes de 380 a 1200 msnm. Se obtuvieron 290 individuos, pertenecientes a 74 especies de 50 géneros y seis subfamilias. Este es uno de los primeros estudios de Chrysomelidae realizados en el noreste de México, documentándose ocho nuevos registros para Tamaulipas(Babia costalisdebaja, Diplacaspis prosternalis, Chrysogramma septempunctata, Disonycha teapensis, Margaridisa atriventris, Metrioidea varicornis, Miraces aeneipennis y Acalymma flavovittatum) y uno para México (Malacorhinus acaciae).
Loss of vegetation cover is a major factor that endangers biodiversity. Therefore, the use of geographic information systems and the analysis of satellite images are important for monitoring these changes in Natural Protected Areas (NPAs). In northeastern Mexico, the Natural Protected Area Altas Cumbres (NPAAC) represents a relevant floristic and faunistic patch on which the impact of loss of vegetation cover has not been assessed. This work aimed to analyze changes of land use and coverage (LULCC) over the last 42 years on the interior and around the exterior of the area, and also to propose the time of succession for the most important types of vegetation. For the analysis, LANDSAT satellite images from 1973, 1986, 2000, 2005 and 2015 were used, they were classified in seven categories through a segmentation and maximum likelihood analysis. A cross-tabulation analysis was performed to determine the succession gradient. Towards the interior of the area, a significant reduction of tropical vegetation and, to a lesser extent, temperate forests was found, as well as an increase in scrub cover from 1973 to 2015. In addition, urban and vegetation-free areas, as well as modified vegetation, increased to the exterior. Towards the interior of the NPA, the processes of perturbation and recovery were mostly not linear, while in the exterior adjacent area, the presence of secondary vegetation with distinct definite time of succession was evident. The analysis carried out is the first contribution that evaluates LULCC in this important NPA of northeastern Mexico. Results suggest the need to evaluate the effects of these modifications on species.
Leaf beetles (Chrysomelidae: Coleoptera) constitute a highly diverse family of phytophagous insects with high ecological relevance, due to their host plant specificity and their close association to vegetation variables. Therefore, secondary succession and seasonal changes after loss of vegetal cover will have a significant influence on their community patterns. Accordingly, responses of leaf beetles to such environmental heterogeneity make them a suitable taxon for monitoring disturbance, which is more important for endangered habitats such as the low thorn forests (LTF) in northeastern Mexico. We conducted a study in a LTF fragment in order to assess the effects of secondary succession and seasonality on leaf beetle communities, as well as to quantify the importance of Chrysomelidae as an indicator taxon. Landsat scenes were used for delimiting a successional gradient, in which four succession categories were selected: four years, 17 years, and 31 years since loss of vegetal cover, and conserved areas. Eight plots of 100 m2were randomly delimited in each category; plots were sampled monthly, using an entomological sweep net, from May 2016 to April 2017. In total, 384 samples were collected by the end of study, from which 6978 specimens, six subfamilies, 57 genera, and 85 species were obtained. Species richness was higher in early succession areas. Abundance declined significantly from early successional to conserved areas, but the conserved areas had the higher diversity. Furthermore, differences in abundance were significant between rainy and dry seasons in areas of four, 17, and 31 years of succession, but not in conserved areas; also, all categories had a similar abundance during the dry season. Intermediate (17 and 31 years) and conserved areas differed in the season of higher diversity. Regarding inventory completeness, it was close to or above 70 % for all comparisons, although it was very low for the 17-year category during the rainy season. Faunistic similarity was higher between intermediate categories. A total of 24 species had a significant indicator value. Effects of succession time and seasonality on leaf beetle communities are here quantified for first time in LTF forests. Influences of environmental heterogeneity and intermediate disturbance are discussed as main drivers of the results obtained. Several leaf beetle species are proposed that could be useful for monitoring succession time and secondary LTF vegetation in northeastern Mexico. However, studies must be replicated at other regions, in order to obtain a better characterization of disturbance influence on leaf beetles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.