We study the algebra of Wilson line operators in three-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric U(M ) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M, N ), and its connection to K-theoretic Gromov-Witten invariants for Gr(M, N ). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M, N ), isomorphic to the Verlinde algebra for U(M ), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.
Applying advances in exact computations of supersymmetric gauge theories, we study the structure of correlation functions in two-dimensional N = (2, 2) Abelian and non-Abelian gauge theories. We determine universal relations among correlation functions, which yield differential equations governing the dependence of the gauge theory ground state on the Fayet-Iliopoulos parameters of the gauge theory. For gauge theories with a non-trivial infrared N = (2, 2) superconformal fixed point, these differential equations become the Picard-Fuchs operators governing the moduli-dependent vacuum ground state in a Hilbert space interpretation. For gauge theories with geometric target spaces, a quadratic expression in the Givental I-function generates the analyzed correlators. This gives a geometric interpretation for the correlators, their relations, and the differential equations. For classes of Calabi-Yau target spaces, such as threefolds with up to two Kähler moduli and fourfolds with a single Kähler modulus, we give general and universally applicable expressions for Picard-Fuchs operators in terms of correlators. We illustrate our results with representative examples of two-dimensional N = (2, 2) gauge theories.March, 2018
We study a perturbation family of $$ \mathcal{N} $$ N = 2 3d gauge theories and its relation to quantum K-theory. A 3d version of the Intriligator-Vafa formula is given for the quantum K-theory ring of Grassmannians. The 3d BPS half-index of the gauge theory is connected to the theory of bilateral hypergeometric q-series, and to modular q-characters of a class of conformal field theories in a certain massless limit. Turning on 3d Wilson lines at torsion points leads to mock modular behavior. Perturbed correlators in the IR regime are computed by determining the UV-IR map in the presence of deformations.
This work aims to classify catchments through the lens of causal inference and cluster analysis. In particular, it uses causal effects (CEs) of meteorological variables on river discharge while only relying on easily obtainable observational data. The proposed method combines time series causal discovery with CE estimation to develop features for a subsequent clustering step. Several ways to customize and adapt the features to the problem at hand are discussed. In an application example, the method is evaluated on 358 European river catchments. The found clusters are analyzed using the causal mechanisms that drive them and their environmental attributes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.