To test models of T-cell recognition, mice transgenic for T-cell receptor alpha or beta chain have been immunized with variant peptides that force changes in the resulting T-cell response. In particular, charge substitutions on the peptide often elicit reciprocal charges in the junctional (CDR3) sequences of T-cell receptor V alpha or V beta chains, indicating direct T-cell receptor-peptide contact, and allowing derivation of a topology for the T-cell receptor-MHC interaction. At one position on the peptide, variants transformed a homogeneous V beta response into a very heterogeneous one.
Chemokine receptors, particularly CCR5 and CXCR4, act as essential coreceptors in concert with CD4 for cellular entry by human immunodeficiency virus type 1 (HIV-1; reviewed in [1]). But infection of CD4(-) cells has also been encountered in various tissues in vivo, including astrocytes, neurons and microvascular endothelial cells of the brain [2] [3] [4] [5] [6], epithelial cells [5] [7], CD4(-) lymphocytes and thymocytes [8] [9], and cardiomyocytes [10]. Here, we present evidence for the infection of CD4(-) cell lines bearing coreceptors by well-known HIV-1 strains when co-cultured with CD4(+) cells. This process requires contact between the coreceptor-bearing and CD4(+) cells and supports the full viral replication cycle within the coreceptor-bearing target cell. Furthermore, CD4 provided in trans facilitates infection of primary human cells, such as brain-derived astrocytes. Although the pathobiological significance of infection of CD4(-) cells in vivo remains to be elucidated, this trans-receptor mechanism may facilitate generation of hidden reservoirs of latent virus that confound antiviral therapies and that contribute to specific AIDS-associated clinical syndromes.
To define the possible impact of T-lymphocyte trafficking parameters on simian immunodeficiency virus (SIV) pathogenesis, we examined migratory profiles of carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled T lymphocytes in acutely SIV mac251 -infected and uninfected macaques within 48 h after autologous transfer. Despite significant upregulation of homeostatic chemokine CCL19/macrophage inflammatory protein 3 and proinflammatory chemokine CXCL9/monokine induced by gamma interferon in secondary lymphoid tissue in SIV infection, no differences in CFSE ؉ T-lymphocyte frequencies or cell compartmentalization in lymph nodes were identified between animal groups. By contrast, a higher frequency of CFSE ؉ T lymphocytes in the small intestine was detected in acute SIV infection. This result correlated with increased numbers of gut CD4 T lymphocytes expressing chemokine receptors CCR9, CCR7, and CXCR3 and high levels of their respective chemokine ligands in the small intestine. The changes in trafficking parameters in SIV-infected macaques occurred concomitantly with acute gut CD4 T-lymphocyte depletion. Here, we present the first in vivo T-lymphocyte trafficking study in SIV infection and a novel approach to delineate T-lymphocyte recruitment into tissues in the nonhuman primate animal model for AIDS. Such studies are likely to provide unique insights into T-lymphocyte sequestration in distinct tissue compartments and possible mechanisms of CD4 T-lymphocyte depletion and immune dysfunction in simian AIDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.