The paper evaluates the performance of alternating current (AC) square waveform submerged arc welding (SAW) as a candidate technology for manufacturing thick welds for high-pressure vessels. A new mathematical formulation for calculating melting efficiency in square waveform arc welding is presented. The melting efficiency and the heat consumption are presented as a mathematical model of welding parameters, namely welding current, welding speed, current frequency, and electrode negativity (EN) ratio. The proposed approach is demonstrated through the welding of 2.25Cr-1Mo heat-resistant steel performed over a wide range of welding parameters. The investigation provides deeper insights into the interplay between process parameter, total heat consumption, and melting efficiency. The effect on flux consumption is also explained. The melting efficiency is inversely proportional to flux consumption. The welding heat does not necessarily promote the plate melting. Improper use of welding heat may lead to decreased melting efficiency and increased unwanted melting and consumption of welding flux. Compared to the conventional direct current (DC) power sources, the AC square waveform welding achieves almost the same order of melting efficiency with added advantages of better weld bead shape and flux consumption in a desirable range. The two additional parameters (frequency and EN ratio) of the AC square waveform power source provide more freedom to fine-tune the process and thereby efficiently use welding heat. The results of this investigation will be advantageous to the designers and fabricators of high-pressure vessels using AC square waveform welding.
The complexity in weld profile caused by abrupt change in polarity in square waveform welding is investigated through the development of a model capable to accurately predict weld profile. A semi-analytical model is conceived wherein characteristic attributes of a composite parabolic–elliptic function, which represent the weld profile, are obtained through nonlinear regression (NLR). The proposed model is demonstrated for its efficacy in the prediction of weld profile over a wide range of welding parameters, vis-à-vis, welding current, frequency, electrode negative (EN) ratio, and welding velocity. The investigation suggests that the center and outer cores of welding arc remains more active during positive and negative polarity, respectively, that leads to distinct macroscopic zones in weld cross section and thus, necessitates a composite profile for representation of weld profile. The intersection of the zones forms a metallurgical notch which the investigation offers a method to estimate and thus control. Unlike the convention continuous arc welding, the waveform arc welding caters welding at higher velocity without compromising the weld penetration and almost abolishing the metallurgical notch as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.