Five cDNA clones, harboring genetic messages preferentially expressed during the sexual differentiation process, were isolated from a cDNA library of Schizosaccharomyces pombe by subtractive screening. Transcription of the corresponding genes, termed isp3, 4, 5, 6, and 7, was dependent on nitrogen starvation and their induction occurred at several stages of spore formation. Analysis of the cDNA primary structures revealed a capacity for the coding of polypeptides of 19.2 kDa, 88.3 kDa, 60.1 kDa, 49.7 kDa, and 43.8 kDa, respectively. The translated amino-acid sequences of isp5 and isp6 were found to show significant similarities to those of amino-acid permeases and proteinase B of Saccharomyces cerevisiae, respectively. Disruption of isp6 arrested the cell cycle prior to conjugation and caused a drastic blocking effect on spore formation.
Indonesia has been known as a country with high medicinal plant diversity. One of the most common medicinal plant from Indonesia is red ginger (Zingiber officinale Rosc.). Nevertheless, limited studies of endophytic fungi associated with these medicinal plants are hitherto available. The objectives of this research were to study the diversity of endophytic fungi on red ginger and to analyze their potential as a source of antifungal agent. All parts of plant organs such as leaf, rhizome, root, and stem were subjected for isolation. Fungal identification was carried out by using a combination of morphological characteristic and molecular analysis of DNA sequence generated from ITS rDNA region. Thirty endophytic fungi were successfully isolated from leaf, rhizome, root, and stem of red ginger plant. Antagonistic activity was tested against Fusarium oxysporum, a pathogenic fungus on plants, using an antagonistic assay. Based on this approach, the fungi were assigned as Acremonium macroclavatum, Beltraniella sp., Cochliobolus geniculatus and its anamorphic stage Curvularia affinis, Fusarium solani, Glomerella cingulata and its anamorphic stage Colletotrichum gloeosporoides, Lecanicillium kalimantanense, Myrothecium verrucaria, Neonectria punicea, Periconia macrospinosa, Rhizopycnis vagum, and Talaromyces assiutensis. R. vagum was found specifically on root whereas C. affinis, L. kalimantanense, and M. verrucaria were found on stem of red ginger plant. A. macroclavatum was found specifically in red ginger plant's organ which located under the ground, whereas C. affinis was found from shoot or organ which located above the ground. The antagonistic activity of isolated endophytic fungi against F. oxysporum varied with the inhibition value range from 1.4 to 68.8%. C. affinis (JMbt7), F. solani (JMd14), and G. cingulata (JMr2) had significantly high antagonistic activity with the value above 65%; and R. vagum (JMa4) and C. geniculatus (JMbt9) had significantly low antagonistic activity with the range value 0-10%.
Cultivation of the biofuel plant Jatropha (Jatropha curcas L.) has spread around the world because of its drought resistance, high seed oil content, and adaptability to di erent environmental conditions. Because of these attributes, Jatropha has the potential to be one of the main resources for next-generation biodiesel fuel. To improve the productivity of Jatropha biomass, it is important to understand the molecular functions of key Jatropha genes, and to modify various agronomic traits of Jatropha via molecular breeding. A reliable and e cient protocol for genetic transformation of Jatropha is a prerequisite for molecular biology research and breeding on this plant. Here, we developed a system in which the herbicide bispyribac sodium salt, which inhibits acetolactate synthase, was used as the selection agent, and a two-point-mutated acetolactate synthase gene (mALS) was used to confer resistance upon transformants. Application of this system signi cantly improved the e ciency of Agrobacterium tumefaciens-mediated stable transformation of the high-yielding elite Jatropha population, IP-2P. e bispyribac-mALS system was also successfully applied in the Agrobacterium rhizogenes-mediated hairy roots system, which allowed integration of a foreign gene and expression in Jatropha root tissues within 2 weeks. e new protocols described here are powerful tools not only for functional studies on endogenous genes, but also for the molecular breeding of Jatropha to develop elite varieties.
ABSTRAKKappaphycus alvarezii adalah jenis alga merah yang memproduksi kappa karagenan yang sangat penting untuk industri makanan, farmasi, dan kosmetik. Untuk meningkatkan produksi, diperlukan ketersediaan bahan baku yang baik. Salah satu yang memengaruhi ketersediaan bahan baku adalah kondisi lingkungan perairan untuk budidaya. Metallothionein (MT) adalah protein yang memiliki kemampuan untuk mengikat ion logam seperti Cd, Zn, dan Cu. Tujuan penelitian ini adalah untuk mengintroduksi gen Metallothionein Tipe II (MaMt2) ke dalam genom K. alvarezii menggunakan Agrobacterium tumefaciens. Talus rumput laut diinokulasi dengan A. tumefaciens mengandung plasmid pIG6-SMt2 yang membawa gen MaMt2, selanjutnya dilakukan seleksi bertingkat menggunakan higromisin 10 mg/L dan 20 mg/L. Hasil efisiensi transformasi yang diperoleh adalah 27,4%, efisiensi regenerasi tunas transgenik adalah 27,6%. Analisis molekuler dengan PCR menunjukkan bahwa 13 tunas transgenik mengandung gen MaMt2. Tunas transgenik putatif ditumbuhkan hingga menjadi talus baru dan dapat dilakukan uji tantang pada penelitian selanjutnya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.