The work of the ITPA SOL/divertor group is reviewed and implications for ITER discussed. Studies of near SOL gradients have revealed a connection to underlying turbulence models. Analysis of a multi-machine database shows that parallel conduction gradients near the separatrix scale as major radius. New SOL measurements have implicated low-field side transport as driving parallel flows to the inboard side. The high-n nature of ELMs has been elucidated and new measurements have determined that they carry ~10-20% of the ELM energy to the far SOL with implications for ITER limiters and the upper divertor. Analysis of ELM measurements imply that the ELM continuously loses energy as it travels across the SOL-larger gaps should reduce surface loads. The predicted divertor power loads for ITER disruptions has been reduced as a result of finding that the divertor footprint broadens during the thermal quench and that the plasma can lose up to 80% of its thermal energy before the thermal quench (not true for VDEs or ITBs). On the other hand predictions of power loading to surfaces outside the divertor have increased. Disruption mitigation through massive gas puffing has been successful at reducing divertor heat loads but estimates of the effect on the main chamber walls indicate 10s of kG of Be could be melted/mitigation. Estimates of ITER tritium retention have reduced the amount retained/discharge although the uncertainties are large and tritium cleanup may be necessary every few days to weeks. Long-pulse studies have shown that the fraction of injected gas that can be recovered after a discharge decreases with discharge length. The retention rate on the sides of tiles appears to ~ 1-3% of the ion flux to the front surface for C tiles and ~100x less for Mo tiles. T removal techniques are being developed based on surface heating and surface ablation although ITER mixed materials will make T removal more difficult. The use of mixed materials gives rise to a number of potential processes-e.g. reduction of surface melting temperatures (formation of alloys) and reduction of chemical sputtering. Advances in modelling of the ITER divertor and flows have enhanced the capability to match experimental data and predict ITER performance.
This paper considers a fast track to non-energy applications of nuclear fusion that is associated with the ‘fusion for neutrons’ (F4N) paradigm. Being a useful product accompanying energy, fusion neutrons are more valuable than the energy released in DT reactions and they are urgently needed for research purposes and to develop and validate modern technologies. In the near future neutron yield in fusion devices will become significantly larger than that of fission and accelerator sources. This paper describes a compact tokamak fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m with magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1–2 MA. The production rate of DT neutrons of (3–10) × 1017 n s−1 and their flux at the first wall of 0.2 MW m−2 ensure that the device is capable of fusion–fission demonstration experiments. The problems of major concern are discharge initiation, current drive, plasma—fast ion beam stability and high first wall and divertor loads. The conceptual design provides solutions to these problems and suggests the feasibility of the FNS-ST.
A new analytical approximation for the electric potential profile in the presence of an oblique magnetic field and the analytical solution for the particle motion just before the impact with a plasma-facing surface are presented. These approximations are in good agreement with fluid solutions and the corresponding PIC simulations. These expressions were applied to provide effective physical erosion yields for Be, which have in a second step been used in ERO code simulations of spectroscopy at Be limiters of the JET ITER-like wall. These new analytical expressions lead to an increase of the effective physical sputtering yields of Be by deuteron impact up to 30% in comparison with earlier pure numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.