A systematic study of the PTW microDiamond (MD) output factors (OF) is reported, aimed at clarifying its response in small fields and investigating its suitability for small field reference dosimetry. Ten MDs were calibrated under Co irradiation. OF measurements were performed in 6 MV photon beams by a CyberKnife M6, a Varian DHX and an Elekta Synergy linacs. Two PTW silicon diodes E (Si-D) were used for comparison. The results obtained by the MDs were evaluated in terms of absorbed dose to water determination in reference conditions and OF measurements, and compared to the results reported in the recent literature. To this purpose, the Monte Carlo (MC) beam-quality correction factor, [Formula: see text], was calculated for the MD, and the small field output correction factors, [Formula: see text], were calculated for both the MD and the Si-D by two different research groups. An empirical function was also derived, providing output correction factors within 0.5% from the MC values calculated for all of the three linacs. A high reproducibility of the dosimetric properties was observed among the ten MDs. The experimental [Formula: see text] values are in agreement within 1% with the MC calculated ones. Output correction factors within +0.7% and -1.4% were obtained down to field sizes as narrow as 5 mm. The resulting MD and Si-D field factors are in agreement within 0.2% in the case of CyberKnife measurements and 1.6% in the other cases. This latter higher spread of the data was demonstrated to be due to a lower reproducibility of small beam sizes defined by jaws or multi leaf collimators. The results of the present study demonstrate the reproducibility of the MD response and provide a validation of the MC modelling of this device. In principle, accurate reference dosimetry is thus feasible by using the microDiamond dosimeter for field sizes down to 5 mm.
The aim of the present work was to investigate how the native signal observed in the electron paramagnetic resonance (EPR) spectrum of tooth enamel and dentin is associated with the organic content of the two tissues. This was achieved by comparing the EPR native signal and the optical bands (Raman and infrared, IR) associated with organic components of tooth enamel and dentin, in natural and deproteinated samples. The main results were: (a) in natural samples, the organic optical bands are more intense in dentin than in enamel, in contrast with the EPR native signal which shows similar intensity in the two tissues; (b) after deproteination, the optical organic bands are completely suppressed in both dentin and enamel, while the EPR native signal is eliminated only in dentin. It is suggested that the IR and Raman organic bands are originated in the bulk of the organic matrix, while the paramagnetic centres associated with the EPR native signal are located in the organic-mineral interface.
BackgroundPET/CT has recently been shown to be a viable alternative to traditional post-infusion imaging methods providing good quality images of 90Y-laden microspheres after selective internal radiation therapy (SIRT). In the present paper, first we assessed the quantitative accuracy of 90Y-PET using an anthropomorphic phantom provided with lungs, liver, spine, and a cylindrical homemade lesion located into the hepatic compartment. Then, we explored the accuracy of different computational approaches on dose calculation, including (I) direct Monte Carlo radiation transport using Raydose, (II) Kernel convolution using Philips Stratos, (III) local deposition algorithm, (IV) Monte Carlo technique (MCNP) considering a uniform activity distribution, and (V) MIRD (Medical Internal Radiation Dose) analytical approach. Finally, calculated absorbed doses were compared with those obtained performing measurements with LiF:Mg,Cu,P TLD chips in a liquid environment.ResultsOur results indicate that despite 90Y-PET being likely to provide high-resolution images, the 90Y low branch ratio, along with other image-degrading factors, may produce non-uniform activity maps, even in the presence of uniform activity. A systematic underestimation of the recovered activity, both for the tumor insert and for the liver background, was found. This is particularly true if no partial volume correction is applied through recovery coefficients. All dose algorithms performed well, the worst case scenario providing an agreement between absorbed dose evaluations within 20%. Average absorbed doses determined with the local deposition method are in excellent agreement with those obtained using the MIRD and the kernel-convolution dose calculation approach.Finally, absorbed dose assessed with MC codes are in good agreement with those obtained using TLD in liquid solution, thus confirming the soundness of both calculation approaches. This is especially true for Raydose, which provided an absorbed dose value within 3% of the measured dose, well within the stated uncertainties.ConclusionsPatient-specific dosimetry is possible even in a scenario with low true coincidences and high random fraction, as in 90Y–PET imaging, granted that accurate absolute PET calibration is performed and acquisition times are sufficiently long. Despite Monte Carlo calculations seeming to outperform all dose estimation algorithms, our data provide a strong argument for encouraging the use of the local deposition algorithm for routine 90Y dosimetry based on PET/CT imaging, due to its simplicity of implementation.
This study summarizes the 20-year efforts for dose reconstruction in tooth enamel of the Techa riverside residents exposed to ionizing radiation as a result of radionuclide releases into the river in 1949-1956. It represents the first combined analysis of all the data available on EPR dosimetry with teeth of permanent residents of the Techa riverside territory. Results of electron paramagnetic resonance (EPR) measurements of 302 teeth donated by 173 individuals living permanently in Techa riverside settlements over the period of 1950-1952 were analyzed. These people were residents of villages located at the free-flowing river stream or at the banks of stagnant reservoirs such as ponds or blind river forks. Cumulative absorbed doses measured using EPR are from several sources of exposure, viz., background radiation, internal exposure due to bone-seeking radionuclides (Sr, Sr/Y), internal exposure due to Cs/Ba incorporated in soft tissues, and anthropogenic external exposure. The purpose of the present study was to evaluate the contribution of different sources of enamel exposure and to deduce external doses to be used for validation of the Techa River Dosimetry System (TRDS). Since various EPR methods were used, harmonization of these methods was critical. Overall, the mean cumulative background dose was found to be 63 ± 47 mGy; cumulative internal doses due to Sr andSr/Y were within the range of 10-110 mGy; cumulative internal doses due to Cs/Ba depend on the distance from the site of releases and varied from 1 mGy up to 90 mGy; mean external doses were maximum for settlements located at the banks of stagnant reservoirs (~500 mGy); in contrast, external doses for settlements located along the free-flowing river stream did not exceed 160 mGy and decreased downstream with increasing distance from the site of release. External enamel doses calculated using the TRDS code and derived from the EPR measurements were found to be in good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.