Purpose/objectives To report preliminary data on treatment outcome and compliance to dose-intensified organ sparing SBRT for prostate cancer using a novel electromagnetic transmitter-based tracking system (RayPilotÒ System) to account for intra-fractional organ motion. Material/methods Thirteen patients with intermediate unfavorable (9) and selected high-risk (4) prostate cancer underwent dose-escalated SBRT in 4 or 5 fractions (BED1.5 = 279 Gy and 253 Gy, respectively). The VMAT treatment consisted in two 6FFF or 10FFF full arcs optimized to have the 95% isodose covering at least 95% of the PTV (2 mm isotropic expansion of the CTV). Whenever the real-time tracking registered a displacement that exceeded 2 mm during the setup and/or the beam delivery, the treatment was interrupted and the prostate motion was promptly corrected. The incidence of treatment-related genitourinary (GU) and gastrointestinal (GI) toxicity, patient QoL and PSA outcomes were computed from the start of treatment to the last follow-up date. Results All patients completed the treatment in the expected time (10.2 +/− 4.2 minutes) and their compliance to the procedure was excellent. No clinically significant acute Grade 2 or higher GI (rectal) and GU side effects were observed within 90 days from the treatment completion. The median IPSS increased from 8 at baseline to 12 one-month after treatment and settled to 6 at 3 months. EPIC-26 scores in the urinary domain decreased from a median baseline of 86 pre-treatment to 79 at one-month and returned to baseline at a later timepoint (median score of 85 at 3 months). EPIC-26 scores in the bowel domains did not show significant changes within 3 months following RT. The prostate was found within 1 mm from its initial position in 78% of the beam-on time, between 1 and 2 mm in 20%, and exceeded 2 mm only in 2%, after correction for motion which was performed in 45% of the fractions, either during setup or beam delivery. Conclusions Our preliminary findings show that dose intensified SBRT for unfavorable prostate tumors does not come at the cost of an increased toxicity, provided that a reliable technique for real time prostate monitoring is ensured. Fast FFF beams contributed to reduce intra-fractional motion. These observations need to be confirmed on a larger scale and a longer follow up.
AimIn this study, a not yet commercially available fully-automated lexicographic optimization (LO) planning algorithm, called mCycle (Elekta AB, Stockholm, Sweden), was validated for cervical cancer.Material and methodsTwenty-four mono-institutional consecutive treatment plans (50 Gy/25 fx) delivered between November 2019 and April 2022 were retrospectively selected. The automatic re-planning was performed by mCycle, implemented in the Monaco TPS research version (v5.59.13), in which the LO and Multicriterial Optimization (MCO) are coupled with Monte Carlo calculation. mCycle optimization follows an a priori assigned priority list, the so-called Wish List (WL), representing a dialogue between the radiation oncologist and the planner, setting hard constraints and following objectives. The WL was tuned on a patient subset according to the institution’s clinical protocol to obtain an optimal plan in a single optimization. This robust WL was then used to automatically re-plan the remaining patients. Manual plans (MP) and mCycle plans (mCP) were compared in terms of dose distributions, complexity (modulation complexity score, MCS), and delivery accuracy (perpendicular diode matrices, gamma analysis-passing ratio, PR). Their clinical acceptability was assessed through the blind choice of two radiation oncologists. Finally, a global quality score index (SI) was defined to gather into a single number the plan evaluation process.ResultsThe WL tuning requested four patients. The 20 automated re-planning tasks took three working days. The median optimization and calculation time can be estimated at 4 h and just over 1 h per MP and mCP, respectively. The dose comparison showed a comparable organ-at-risk spare. The planning target volume coverage increased (V95%: MP 98.0% [95.6–99.3]; mCP 99.2%[89.7–99.9], p >0.05). A significant increase has been registered in MCS (MP 0.29 [0.24–0.34]; mCP 0.26 [0.23–0.30], p <0.05) without affecting delivery accuracy (PR (3%/3mm): MP 97.0% [92.7–99.2]; mCP 97.1% [95.0–98.6], p >0.05). In the blind choice, all mCP results were clinically acceptable and chosen over MP in more than 75% of cases. The median SI score was 0.69 [0.41–0.84] and 0.73 [0.51–0.82] for MP and mCP, respectively (p >0.05).ConclusionsmCycle plans were comparable to clinical manual plans, more complex but accurately deliverable and registering a similar SI. Automated plans outperformed manual plans in blinded clinical choice.
BackgroundExtreme hypofractionation requires tight planning margins, high dose gradients, and strict adherence to planning criteria in terms of patient positioning and organ motion mitigation. This study reports the first clinical experience worldwide using a novel electromagnetic (EM) tracking device for intrafraction prostate motion management during dose-escalated linac-based stereotactic body radiation therapy (SBRT).MethodsThirteen patients with organ-confined prostate cancer underwent dose-escalated SBRT using flattening filter-free (FFF) volumetric modulated arc therapy (VMAT). The EM tracking device consisted of an integrated Foley catheter with a transmitter. Patients were simulated and treated with a filled bladder and an empty rectum. Setup accuracy was achieved by ConeBeam-CT (CBCT) matching, and motion was tracked during all the procedure. Treatment was interrupted when the signals exceeded a 2 mm threshold in any of the three spatial directions and, unless the offset was transient, target position was re-defined by repeating CBCT. Moreover, the displacements that would have occurred without any intrafraction organ motion management (i.e. no interruptions and repositionings) were simulated.ResultsIn 31 out of 56 monitored fractions (55%), no intervention was required to correct the target position. In 25 (45%) a correction was mandated, but only in 10 (18%), the beam delivery was interrupted. Total treatment time lasted on average 10.2 minutes, 6.7 minutes for setup, and 3.5 minutes for beam delivery. Without any intrafraction motion management, the overall mean treatment time and the mean delivery time would have been 6.9 minutes and 3.2 minutes, respectively. The prostate would have been found outside the tolerance in 8% of the total session time, in 4% of the time during the setup, and in 14% during the beam-on phase. Predominant motion pattern was posterior and its probability increased with time, with a mean motion ≤ 2 mm occurring within 10 minutes.ConclusionsEM real-time tracking was successfully implemented for intrafraction motion management during dose-escalated prostate SBRT. Results showed that most of the observed displacements were < 2 mm in any direction; however, there were a non-insignificant number of fractions with motion exceeding the predefined threshold, which would have otherwise gone undetected without intrafraction motion management.
Background: The aim of this study was to investigate the feasibility of ultrahypofractionated radiotherapy to the prostate bed in patients with biochemical and/or clinical relapse following radical prostatectomy who were enrolled in the prospective, observational, multicentric POPART trial (NCT04831970). Methods: Patients with post-radical prostatectomy PSA levels of ≥0.1–2.0 ng/mL and/or local relapse at PSMA PET/CT or multiparametric MRI were treated with Linac-based SBRT on the prostate bed up to a total dose of 32.5 Gy in five fractions every other day (EQD21.5 = 74.2 Gy). Maximum acute toxicity was assessed using the Common Terminology Criteria for Adverse Events version 5 scale. International Consultation on Incontinence Questionnaire—Short Form (ICIQ-SF) and Prostate Cancer Index Composite for Clinical Practice (EPIC-CP) scores were assessed at baseline and during the follow-up. Results: From April 2021 to June 2022, thirty men with a median age of 72 years (range 55–82) were enrolled in three centers. The median PSA level before RT was 0.30 ng/mL (range 0.18–1.89 ng/mL). At 3 months post-treatment, no GI or ≥2 GU side effects were reported; three patients (10%) experienced Grade 1 GU toxicity. No changes in ICIQ-SF or in the urinary domains of EPIC-CP were observed, while a transient worsening was registered in the bowel domain. At the same time point, all but two patients, who progressed distantly, were found to be biochemically controlled with a median post-treatment PSA level of 0.07 ng/mL (range 0–0.48 ng/mL). Conclusions: Our preliminary findings show that SBRT can be safely extended to the postoperative setting, without an increase in short-term toxicity or a significant decline in QoL. Long-term results are needed to confirm this strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.