Summary. In an in vitro clot lysis model in human plasma, carboxypeptidase U (CPU) is generated by thrombin following the coagulation and by plasmin at the later stage of clot lysis. CPU is able to slow down clot lysis by suppressing the cofactor activity of partially degraded fibrin in the plasminogen activation by tissue-type plasminogen activator (t-PA). Making use of thrombomodulin and a thrombin inhibitor, the generation of CPU during the in vitro clot lysis can be manipulated both in terms of magnitude and time course. The data obtained demonstrate that CPU affects the clot dissolution through a threshold-dependent mechanism: as long as the CPU activity remains above the threshold value, lysis is prevented from proceeding into the propagation phase. From the moment the CPU activity drops below this threshold value, the rate of lysis accelerates. This threshold value for CPU activity is dictated by the t-PA concentration: increasing the t-PA concentration increases the CPU threshold and vice versa. This implies that the effect of the CPU pathway will become more apparent at a lower fibrinolytic capacity. Our threshold-based hypothesis indicates that the time course of proCPU activation, the stability of CPU and the t-PA concentration all play a crucial role in determining the result of the in vitro clot lysis experiment. Furthermore, this hypothesis provides us with new insights into previously published data on the effects of CPU on in vitro clot lysis by high and low t-PA concentrations.
SummaryCarboxypeptidase U (CPU, TAFIa) recently gained interest as a significant player in dampening the fibrinolytic rate. The aim of this study was to investigate the time course of the generation of CPU activity during coagulation and fibrinolysis using an in vitro clot lysis model in human plasma. A first peak of CPU activity appeared after initiation of the coagulation phase and a second rise in CPU activity was observed during the fibrinolysis. The decrease in the proCPU plasma concentration followed the same trend as the appearance of the CPU activity. The direct thrombin inhibitor inogatran eliminated the CPU generation during coagulation but not during fibrinolysis. Addition of the plasmin inhibitor aprotinin during fibrinolysis resulted in a decrease in CPU activation during the lysis phase. These results demonstrate that proCPU was activated during coagulation by thrombin and during fibrinolysis by plasmin. Addition of a CPU inhibitor before initiation of clotting decreased the clot lysis time as expected. However, addition in the time period between the two peaks of CPU activity had no apparent effect on the clot lysis time.
Background: Inhibition of PAI-1 may yield beneficial effects in e.g. cardiovascular diseases and cancer. Results: The small molecule PAI-1 inhibitor, AZ3976, binds latent but not active PAI-1. The structure of the AZ3976⅐latent PAI-1 complex is presented. Conclusion: AZ3976 inhibits PAI-1 by accelerating latency transition, presumably by binding a prelatent form of PAI-1. Significance: This study provides new drug design opportunities for PAI-1 inhibitors.
Activated factor XI (FXIa) inhibitors are anticipated to combine anticoagulant and profibrinolytic effects with a low bleeding risk. This motivated a structure aided fragment based lead generation campaign to create novel FXIa inhibitor leads. A virtual screen, based on docking experiments, was performed to generate a FXIa targeted fragment library for an NMR screen that resulted in the identification of fragments binding in the FXIa S1 binding pocket. The neutral 6-chloro-3,4-dihydro-1H-quinolin-2-one and the weakly basic quinolin-2-amine structures are novel FXIa P1 fragments. The expansion of these fragments towards the FXIa prime side binding sites was aided by solving the X-ray structures of reported FXIa inhibitors that we found to bind in the S1-S1’-S2’ FXIa binding pockets. Combining the X-ray structure information from the identified S1 binding 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment and the S1-S1’-S2’ binding reference compounds enabled structure guided linking and expansion work to achieve one of the most potent and selective FXIa inhibitors reported to date, compound 13, with a FXIa IC50 of 1.0 nM. The hydrophilicity and large polar surface area of the potent S1-S1’-S2’ binding FXIa inhibitors compromised permeability. Initial work to expand the 6-chloro-3,4-dihydro-1H-quinolin-2-one fragment towards the prime side to yield molecules with less hydrophilicity shows promise to afford potent, selective and orally bioavailable compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.