Moving object detection is a critical task for autonomous vehicles. As dynamic objects represent higher collision risk than static ones, our own ego-trajectories have to be planned attending to the future states of the moving elements of the scene. Motion can be perceived using temporal information such as optical flow. Conventional optical flow computation is based on camera sensors only, which makes it prone to failure in conditions with low illumination. On the other hand, LiDAR sensors are independent of illumination, as they measure the time-of-flight of their own emitted lasers. In this work, we propose a robust and real-time CNN architecture for Moving Object Detection (MOD) under low-light conditions by capturing motion information from both camera and LiDAR sensors. We demonstrate the impact of our algorithm on KITTI dataset where we simulate a low-light environment creating a novel dataset "Dark-KITTI". We obtain a 10.1% relative improvement on Dark-KITTI, and a 4.25% improvement on standard KITTI relative to our baselines. The proposed algorithm runs at 18 fps on a standard desktop GPU using 256 × 1224 resolution images.
Exclusive cross sections and momentum distributions have been measured for quasifree one-neutron knockout reactions from a 54 Ca beam striking on a liquid hydrogen target at ∼200 MeV=u. A significantly larger cross section to the p 3=2 state compared to the f 5=2 state observed in the excitation of 53 Ca provides direct evidence for the nature of the N ¼ 34 shell closure. This finding corroborates the arising of a new shell closure in neutron-rich calcium isotopes. The distorted-wave impulse approximation reaction formalism with shell model calculations using the effective GXPF1Bs interaction and ab initio calculations concur our experimental findings. Obtained transverse and parallel momentum distributions demonstrate the sensitivity of quasifree one-neutron knockout in inverse kinematics on a thick liquid hydrogen target with the reaction vertex reconstructed to final state spin-parity assignments.
Abstract. The presented paper addresses the problem of detecting and tracking moving objects for autonomous cargo handling in port terminals using a perception system which input data is a single layer laser scanner. A computationally low cost and robust Detection and Tracking Moving Objects (DATMO) algorithm is presented to be used in autonomous guided vehicles and autonomous trucks for efficient transportation of cargo in ports. The method first detects moving objects and then tracks them, taking into account that in port terminals the structure of the environment is formed by containers and that the moving objects can be trucks, AGV, cars, straddle carriers and people among others. Two approaches of the DATMO system have been tested, the first one is oriented to detect moving obstacles and focused on tracking and filtering those detections; and the second one is focused on keepking targets when no detections are provided. The system has been evaluated with real data obtained in the CTT port terminal in Hengelo, the Netherlands. Both methods have been tested in the dataset with good results in tracking moving objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.