In this study, the procedure for treating the nonunion complication of scaphoid fractures using collagen/poly glycolic acid (CPGA) scaffolds with bone marrow mesenchymal stem cell (BM-MSC) therapy was adopted and compared with the commonly employed autologous bone tissue graft. With conducting a two-armed clinical trial, 10 patients with scaphoid nonunions were enrolled in this investigation. Patients were randomly assigned to two groups treated with (1) CPGA + cell therapy and (2) autologous iliac crest bone graft standard therapy. Treatment outcomes were evaluated three months after surgery, measuring the grip and pinch strengths and wrist range of motion, with two questionnaires: Patient-Rated Wrist Evaluation (PRWE) and Quick form of Disabilities of the Arm, Shoulder, and Hand (QDASH). We have also assessed the union rate using clinical and radiologic healing criteria one and three months post-operatively. Restorative effects of CPGA + cell therapy were similar to those of the autologous bone graft standard therapy, except for the grip strength (P = 0.048) and QDASH score (P = 0.044) changes, which were higher in the CPGA + cell therapy group. Three months following the surgery, radiographic images and computed tomography (CT) scans also demonstrated that the scaphoid union rate in the test group was comparable to that of scaphoids treated with the standard autograft method. Our findings demonstrate that the CPGA + cell therapy is a potential alternative for bone grafting in the treatment of bone nonunions.
Background: Off-the-shelf supply of viable engineered tissue is critical for effective and fast treatment of life-threatening injuries such as deep burns. An expanded keratinocyte sheet on the human amniotic membrane (KC sheet-HAM) is a beneficial tissue-engineering product for wound healing. To access an on-hand supply for the widespread application and overcome the time-consuming process, it is necessary to develop a cryopreservation protocol that guarantees the higher recovery of viable keratinocyte sheets after freeze-thawing. This research aimed to compare the recovery rate of KC sheet-HAM after cryopreservation by dimethyl-sulfoxide (DMSO) and glycerol. Methods: Amniotic membrane was decellularized with trypsin, and keratinocytes were cultured on it to form a multilayer, flexible, easy-to-handle KC sheet-HAM. The effects of 2 different cryoprotectants were investigated by histological analysis, live-dead staining, and proliferative capacity assessments before and after cryopreservation. Results: KCs well adhered and proliferated on the decellularized amniotic membrane and successfully represented 3 to 4 stratified layers of epithelialization after 2 to 3 weeks culture period; making it easy to cut, transfer, and cryopreserve. However, viability and proliferation assay indicated that both DMSO and glycerol cryosolutions have detrimental effects on KCs, and KCs-sheet HAM could not recover to the control level after 8 days of culture post-cryo. The KC sheet lost its stratified multilayer nature on AM, and sheet layers were reduced in both cryo-groups compared to the control. Conclusion: Expanding keratinocytes on the decellularized amniotic membrane as a multilayer sheet made a viable easy-to-handle sheet, nonetheless cryopreservation reduced viability and affected histological structure after thawing. Although some viable cells were detectable, our research highlighted the need for a better cryoprotectant protocol other than DMSO and glycerol, specific for the successful banking of viable tissue constructs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.