Switching linear models can be used to represent the behavior of hybrid, time-varying, and nonlinear systems, while generally providing a satisfactory trade-off between accuracy and complexity. Although several control design techniques are available for such models, the effect of modeling errors on the closed-loop performance has not been formally evaluated yet. In this paper, a data-driven synthesis scheme is thus introduced to design optimal switching controllers directly from data, without needing a model of the plant. In particular, the theory will be developed for piecewise affine controllers, which have proven to be effective in many real-world engineering applications. The performance of the proposed approach is illustrated on some benchmark simulation case studies.
In this work, we introduce a novel data-driven model-reference control design approach for unknown linear systems with fully measurable state. The proposed control action is composed by a static feedback term and a reference tracking block, which are shaped from data to reproduce the desired behavior in closed-loop. By focusing on the case where the reference model and the plant share the same order, we propose an optimal design procedure with Lyapunov stability guarantees, tailored to handle state measurements with additive noise. Two simulation examples are finally illustrated to show the potential of the proposed strategy as compared to the state of the art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.