Wilson disease (WD) is a potentially treatable, inherited disorder of copper metabolism that is characterized by the pathological accumulation of copper. WD is caused by mutations in ATP7B, which encodes a transmembrane copper-transporting ATPase, leading to impaired copper homeostasis and copper overload in the liver, brain and other organs. The clinical course of WD can vary in the type and severity of symptoms, but progressive liver disease is a common feature. Patients can also present with neurological disorders and psychiatric symptoms. WD is diagnosed using diagnostic algorithms that incorporate clinical symptoms and signs, measures of copper metabolism and DNA analysis of ATP7B. Available treatments include chelation therapy and zinc salts, which reverse copper overload by different mechanisms. Additionally, liver transplantation is indicated in selected cases. New agents, such as tetrathiomolybdate salts, are currently being investigated in clinical trials, and genetic therapies are being tested in animal models. With early diagnosis and treatment, the prognosis is good; however, an important issue is diagnosing patients before the onset of serious symptoms. Advances in screening for WD may therefore bring earlier diagnosis and improvements for patients with WD.
Consuming beverages containing 10%, 17.5%, or 25% Ereq from HFCS produced dose-dependent increases in circulating lipid/lipoprotein risk factors for CVD and uric acid within 2 wk. These results provide mechanistic support for the epidemiologic evidence that the risk of cardiovascular mortality is positively associated with consumption of increasing amounts of added sugars. This trial was registered at clinicaltrials.gov as NCT01103921.
Consumption of HFCS-sweetened beverages for 2 wk at 25% E increased risk factors for cardiovascular disease comparably with fructose and more than glucose in young adults.
Nutritional ketosis has been found to improve metabolic and inflammatory markers, including lipids, HbA1c, high-sensitivity CRP, fasting insulin and glucose levels, and aid in weight management. We discuss these findings and elaborate on potential mechanisms of ketones for promoting weight loss, decreasing hunger, and increasing satiety. Humans have evolved with the capacity for metabolic flexibility and the ability to use ketones for fuel. During states of low dietary carbohydrate intake, insulin levels remain low and ketogenesis takes place. These conditions promote breakdown of excess fat stores, sparing of lean muscle, and improvement in insulin sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.