To elucidate the molecular pathways that modulate renal cyst growth in ADPKD, we performed global gene profiling on cysts of different size (<1 ml, n = 5; 10-20 ml, n = 5; >50 ml, n = 3) and minimally cystic tissue (MCT, n = 5) from five PKD1 human polycystic kidneys using Affymetrix HG-U133 Plus 2.0 arrays. We used gene set enrichment analysis to identify overrepresented signaling pathways and key transcription factors (TFs) between cysts and MCT. We found down-regulation of kidney epithelial restricted genes (e.g. nephron segment-specific markers and cilia-associated cystic genes such as HNF1B, PKHD1, IFT88 and CYS1) in the renal cysts. On the other hand, PKD1 cysts displayed a rich profile of gene sets associated with renal development, mitogen-mediated proliferation, cell cycle progression, epithelial-mesenchymal transition, hypoxia, aging and immune/inflammatory responses. Notably, our data suggest that up-regulation of Wnt/beta-catenin, pleiotropic growth factor/receptor tyrosine kinase (e.g. IGF/IGF1R, FGF/FGFR, EGF/EGFR, VEGF/VEGFR), G-protein-coupled receptor (e.g. PTGER2) signaling was associated with renal cystic growth. By integrating these pathways with a number of dysregulated networks of TFs (e.g. SRF, MYC, E2F1, CREB1, LEF1, TCF7, HNF1B/ HNF1A and HNF4A), our data suggest that epithelial dedifferentiation accompanied by aberrant activation and cross-talk of specific signaling pathways may be required for PKD1 cyst growth and disease progression. Pharmacological modulation of some of these signaling pathways may provide a potential therapeutic strategy for ADPKD.
Polycystin-1 (PC1), the product of the PKD1 gene mutated in the majority of autosomal dominant polycystic kidney disease (ADPKD) cases, undergoes a cleavage resulting in the intracellular release of its C-terminal tail (CTT). Here, we demonstrate that the PC1 CTT co-localizes with and binds to beta-catenin in the nucleus. This interaction requires a nuclear localization motif present in the PC1 CTT as well as the N-terminal portion of beta-catenin. The PC1 CTT inhibits the ability of both beta-catenin and Wnt ligands to activate T-cell factor (TCF)-dependent gene transcription, a major effector of the canonical Wnt signaling pathway. The PC1 CTT may produce this effect by reducing the apparent affinity of the interaction between beta-catenin and the TCF protein. DNA microarray analysis reveals that the canonical Wnt signaling pathway is activated in ADPKD patient cysts. Our results suggest a novel mechanism through which PC1 cleavage may impact upon Wnt-dependent signaling and thereby modulate both developmental processes and cystogenesis.
Sargent et al. identify the E3 ubiquitin ligase PEX2 as the causative agent of mammalian pexophagy. During amino acid starvation, PEX2 expression increases to ubiquitinate peroxisomal membrane proteins and signal peroxisome degradation by autophagy.
Background: Diarrhea affects a large proportion of children with severe acute malnutrition (SAM). However, its etiology and clinical consequences remain unclear.Objective: We investigated diarrhea, enteropathogens, and systemic and intestinal inflammation for their interrelation and their associations with mortality in children with SAM.Design: Intestinal pathogens (n = 15), cytokines (n = 29), fecal calprotectin, and the short-chain fatty acids (SCFAs) butyrate and propionate were determined in children aged 6–59 mo (n = 79) hospitalized in Malawi for complicated SAM. The relation between variables, diarrhea, and death was assessed with partial least squares (PLS) path modeling.Results: Fatal subjects (n = 14; 18%) were younger (mean ± SD age: 17 ± 11 compared with 25 ± 11 mo; P = 0.01) with higher prevalence of diarrhea (46% compared with 18%, P = 0.03). Intestinal pathogens Shigella (36%), Giardia (33%), and Campylobacter (30%) predominated, but their presence was not associated with death or diarrhea. Calprotectin was significantly higher in children who died [median (IQR): 1360 mg/kg feces (2443–535 mg/kg feces) compared with 698 mg/kg feces (1438–244 mg/kg feces), P = 0.03]. Butyrate [median (IQR): 31 ng/mL (112–22 ng/mL) compared with 2036 ng/mL (5800–149 ng/mL), P = 0.02] and propionate [median (IQR): 167 ng/mL (831–131 ng/mL) compared with 3174 ng/mL (5819–357 ng/mL), P = 0.04] were lower in those who died. Mortality was directly related to high systemic inflammation (path coefficient = 0.49), whereas diarrhea, high calprotectin, and low SCFA production related to death indirectly via their more direct association with systemic inflammation.Conclusions: Diarrhea, high intestinal inflammation, low concentrations of fecal SCFAs, and high systemic inflammation are significantly related to mortality in SAM. However, these relations were not mediated by the presence of intestinal pathogens. These findings offer an important understanding of inflammatory changes in SAM, which may lead to improved therapies. This trial was registered at www.controlled-trials.com as ISRCTN13916953.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.