The deiodination of thyroid hormones in extrathyroidal tissues plays an important role in modulating thyroid hormone action. The type II deiodinase (DII) converts thyroxine to the active hormone 3,5,3 Ј -triiodothyronine, and in the rat is expressed in the brain, pituitary gland, and brown adipose tissue (BAT). Complementary DNAs (cDNAs) for the types I and III deiodinases (DI and DIII, respectively) have been isolated and shown to code for selenoproteins. However, information concerning the structure of the mammalian DII remains limited, and the pattern of its expression in human tissues is undefined. We report herein the identification and characterization of rat and human DII cDNAs. Both code for selenoproteins and exhibit limited regions of homology with the DI and DIII. In the rat pituitary and BAT, DII mRNA levels are altered more than 10-fold by changes in the thyroid hormone status of the animal. Northern analysis of RNA derived from human tissues reveals expression of DII transcripts in heart, skeletal muscle, placenta, fetal brain, and several regions of the adult brain. These studies demonstrate that: ( a ) the rat and human DII are selenoproteins, ( b ) DII expression in the rat is regulated, at least in part, at the pretranslational level in some tissues, and ( c ) DII is likely to be of considerable physiologic importance in thyroid hormone economy in the human fetus and adult. ( J. Clin. Invest. 1996. 98:405-417.)
Developmental exposure to appropriate levels of thyroid hormones (THs) in a timely manner is critical to normal development in vertebrates. Among the factors potentially affecting perinatal exposure of tissues to THs is type 3 deiodinase (D3). This enzyme degrades THs and is highly expressed in the pregnant uterus, placenta, and fetal and neonatal tissues. To determine the physiological role of D3, we have generated a mouse D3 knockout model (D3KO) by a targeted inactivating mutation of the Dio3 gene in mouse ES cells. Early in life, D3KO mice exhibit delayed 3,5,3′-triiodothyronine (T3) clearance, a markedly elevated serum T3 level, and overexpression of T3-inducible genes in the brain. From postnatal day 15 to adulthood, D3KO mice demonstrate central hypothyroidism, with low serum levels of 3,5,3′,5′-tetraiodothyronine (T4) and T3, and modest or no increase in thyroid-stimulating hormone (TSH) concentration. Peripheral tissues are also hypothyroid. Hypothalamic T3 content is decreased while thyrotropin-releasing hormone (TRH) expression is elevated. Our results demonstrate that the lack of D3 function results in neonatal thyrotoxicosis followed later by central hypothyroidism that persists throughout life. These mice provide a new model of central hypothyroidism and reveal a critical role for D3 in the maturation and function of the thyroid axis.
As is typical of other hormone systems, the actions of the thyroid hormones (TH) differ from tissue to tissue depending upon a number of variables. In addition to varying expression levels of TH receptors and transporters, differing patterns of TH metabolism provide a critical mechanism whereby TH action can be individualized in cells depending on the needs of the organism. The iodothyronine deiodinases constitute a family of selenoenzymes that selectively remove iodide from thyroxine and its derivatives, thus activating or inactivating these hormones. Three deiodinases have been identified, and much has been learned regarding the differing structures, catalytic activities, and expression patterns of these proteins. Because of their differing properties, the deiodinases appear to serve varying functions that are important in regulating metabolic processes, TH action during development, and feedback control of the thyroid axis. This review will briefly assess these functional roles and others proposed for the deiodinases and examine some of the current challenges in expanding our knowledge of these important components of the thyroid homeostatic system.
Hypothyroidism and thyrotoxicosis are each associated with an increased risk of fracture. Although thyroxine (T4) is the predominant circulating thyroid hormone, target cell responses are determined by local intracellular availability of the active hormone 3,5,3′-L-triiodothyronine (T3), which is generated from T4 by the type 2 deiodinase enzyme (D2). To investigate the role of locally produced T3 in bone, we characterized mice deficient in D2 (D2KO) in which the serum T3 level is normal. Bones from adult D2KO mice have reduced toughness and are brittle, displaying an increased susceptibility to fracture. This phenotype is characterized by a 50% reduction in bone formation and a generalized increase in skeletal mineralization resulting from a local deficiency of T3 in osteoblasts. These data reveal an essential role for D2 in osteoblasts in the optimization of bone strength and mineralization.thyroid hormone metabolism | fracture | hypothyroidism | bone formation | skeleton T hyroid hormones are essential for linear growth and peak bone mass acquisition. In adults, thyrotoxicosis results in high bone turnover osteoporosis and increased susceptibility to fracture, whereas hypothyroidism reduces bone turnover (1-3). In previous studies, we identified thyroid hormone receptor α (TRα) as the critical mediator of 3,5,3′-L-triiodothyronine (T3) action in bone (4-7). The aim of this study is to investigate the role of the type 2 iodothyronine deiodinase (D2) as a local prereceptor modulator of T3 action in the skeleton.Thyroid hormone actions are determined by local availability of T3 to its nuclear receptor (8). D2 catalyzes removal of an outer ring 5′-iodine atom from the major circulating hormone thyroxine (T4) to generate the active metabolite T3. Conversely, the type 3 deiodinase (D3) inactivates both T4 and T3 by removal of an inner ring 5-iodine atom. Thus, D2 and D3, in conjunction with serum-derived T3, are important local modulators of thyroid hormone action in vivo. Expression of D2 and D3 is regulated in a temporo-spatial and tissue-specific manner, resulting in varying levels of T3 action in individual tissues despite relatively constant serum thyroid hormone levels (8).Mice deficient in D2 (D2KO) exhibit pituitary resistance to feedback regulation by T4 characterized by a 3-fold increase in serum thyroid-stimulating hormone (TSH), a 27% increase in the serum T4 level, but a normal T3 level. The increased TSH and T4 levels are evident as early as postnatal day (PD)10 (9). These changes are accompanied by cold intolerance, impaired hearing, and reduced brain T3 content (10). The type 1 deiodinase (D1) is widely believed to catalyze conversion of T4 to T3 in tissues such as liver and kidney, predominantly for export to plasma. Like the D2KO mice, D1/D2KO double-mutant mice exhibit increases in serum T4 and TSH and have a normal serum T3 level (10).The roles of D1 and D2 in regulating T3 action in the skeleton have not been studied, although limited information regarding growth is available. A minor and trans...
The type 1 deiodinase (D1) is thought to be an important source of T3 in the euthyroid state. To explore the role of the D1 in thyroid hormone economy, a D1-deficient mouse (D1KO) was made by targeted disruption of the Dio1 gene. The general health and reproductive capacity of the D1KO mouse were seemingly unimpaired. In serum, levels of T4 and rT3 were elevated, whereas those of TSH and T3 were unchanged, as were several indices of peripheral thyroid status. It thus appears that the D1 is not essential for the maintenance of a normal serum T3 level in euthyroid mice. However, D1 deficiency resulted in marked changes in the metabolism and excretion of iodothyronines. Fecal excretion of endogenous iodothyronines was greatly increased. Furthermore, when compared with both wild-type and D2-deficient mice, fecal excretion of [125I]iodothyronines was greatly increased in D1KO mice during the 48 h after injection of [125I]T4 or [125I]T3, whereas urinary excretion of [125I]iodide was markedly diminished. From these data it was estimated that a majority of the iodide generated by the D1 was derived from substrates other than T4. Treatment with T3 resulted in a significantly higher serum T3 level and a greater degree of hyperthyroidism in D1KO mice than in wild-type mice. We conclude that, although the D1 is of questionable importance to the wellbeing of the euthyroid mouse, it may play a major role in limiting the detrimental effects of conditions that alter normal thyroid function, including hyperthyroidism and iodine deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.