In animals, mitochondria are mainly organised into an interconnected tubular network extending across the cell along a cytoskeletal scaffold. Mitochondrial fission and fusion, as well as distribution along cytoskeletal tracks, are counterbalancing mechanisms acting in concert to maintain a mitochondrial network tuned to cellular function. Balanced mitochondrial dynamics permits quality control of the network including biogenesis and turnover, and distribution of mitochondrial DNA, and is linked to metabolic status. Cellular and organismal health relies on a delicate balance between fission and fusion, and large rearrangements in the mitochondrial network can be seen in response to cellular insults and disease. Indeed, dysfunction in the major components of the fission and fusion machineries including dynamin‐related protein 1 (DRP1), mitofusins 1 and 2 (MFN1, MFN2) and optic atrophy protein 1 (OPA1) and ensuing imbalance of mitochondrial dynamics can lead to neurodegenerative disease. Altered mitochondrial dynamics is also seen in more common diseases. In this review, the machinery involved in mitochondrial dynamics and their dysfunction in disease will be discussed.
The ‘mitochondrial contact site and cristae organising system’ (MICOS) is an essential protein complex that promotes the formation, maintenance and stability of mitochondrial cristae. As such, loss of core MICOS components disrupts cristae structure and impairs mitochondrial function. Aberrant mitochondrial cristae morphology and diminished mitochondrial function is a pathological hallmark observed across many human diseases such as neurodegenerative conditions, obesity and diabetes mellitus, cardiomyopathy, and in muscular dystrophies and myopathies. While mitochondrial abnormalities are often an associated secondary effect to the pathological disease process, a direct role for the MICOS in health and human disease is emerging. This review describes the role of MICOS in the maintenance of mitochondrial architecture and summarizes both the direct and associated roles of the MICOS in human disease.
Branching morphogenesis of the ureteric bud is integral to kidney development; establishing the collecting ducts of the adult organ and driving organ expansion via peripheral interactions with nephron progenitor cells. A recent study suggested that termination of tip branching within the developing kidney involved stochastic exhaustion in response to nephron formation, with such a termination event representing a unifying developmental process evident in many organs. To examine this possibility, we have profiled the impact of nephron formation and maturation on elaboration of the ureteric bud during mouse kidney development. We find a distinct absence of random branch termination events within the kidney or evidence that nephrogenesis impacts the branching program or cell proliferation in either tip or progenitor cell niches. Instead, organogenesis proceeds in a manner indifferent to the development of these structures. Hence, stochastic cessation of branching is not a unifying developmental feature in all branching organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.