BackgroundMany factors have been associated with circulation of the dengue fever virus and vector, although the dynamics of transmission are not yet fully understood. The aim of this work is to estimate the spatial distribution of the risk of dengue fever in an area of continuous dengue occurrence.MethodsThis is a spatial population-based case-control study that analyzed 538 cases and 727 controls in one district of the municipality of Campinas, São Paulo, Brazil, from 2006-2007, considering socio-demographic, ecological, case severity, and household infestation variables. Information was collected by in-home interviews and inspection of living conditions in and around the homes studied. Cases were classified as mild or severe according to clinical data, and they were compared with controls through a multinomial logistic model. A generalized additive model was used in order to include space in a non-parametric fashion with cubic smoothing splines.ResultsVariables associated with increased incidence of all dengue cases in the multiple binomial regression model were: higher larval density (odds ratio (OR) = 2.3 (95%CI: 2.0-2.7)), reports of mosquito bites during the day (OR = 1.8 (95%CI: 1.4-2.4)), the practice of water storage at home (OR = 2.5 (95%CI: 1.4, 4.3)), low frequency of garbage collection (OR = 2.6 (95%CI: 1.6-4.5)) and lack of basic sanitation (OR = 2.9 (95%CI: 1.8-4.9)). Staying at home during the day was protective against the disease (OR = 0.5 (95%CI: 0.3-0.6)). When cases were analyzed by categories (mild and severe) in the multinomial model, age and number of breeding sites more than 10 were significant only for the occurrence of severe cases (OR = 0.97, (95%CI: 0.96-0.99) and OR = 2.1 (95%CI: 1.2-3.5), respectively. Spatial distribution of risks of mild and severe dengue fever differed from each other in the 2006/2007 epidemic, in the study area.ConclusionsAge and presence of more than 10 breeding sites were significant only for severe cases. Other predictors of mild and severe cases were similar in the multiple models. The analyses of multinomial models and spatial distribution maps of dengue fever probabilities suggest an area-specific epidemic with varying clinical and demographic characteristics.
BackgroundMeasure the populations of Ae. aegypti and Ae. albopictus adults according to sex and location inside or outside the residence, estimate Ae. aegypti female density per house and per resident, and test the association with abiotic factors.MethodsAdult mosquitoes were collected monthly with a hand net and portable electric catcher in the peridomiciliary and intradomiciliary premises of residences in an urban area with ongoing dengue transmission in the municipality of São Sebastião, Brazil, from February 2011 to February 2012.ResultsOf the 1,320 specimens collected, 1,311 were Ae. aegypti, and nine were Ae. albopictus. A total of 653 male and 658 female of Ae. aegypti were recorded, of which 80% were intradomiciliary. The mean density of Ae. aegypti adult females was 1.60 females/house and 0.42 females/resident. There was an association between the number of females and the number of residents in both intradomiciliary and peridomiciliary premises (r2 = 0.92; p < 0.001 and r2 = 0.68; p < 0.001, respectively). There was an association between the number of females and the mean and total rainfall; the correlation was better in peridomiciliary premises (p = 0.00; r2 = 77%) than intradomiciliary premises in both cases (p = 0.01; r2 = 48%). Minimum temperature was associated in both environments, exhibiting the same coefficient of determination (p = 0.02; r2 = 40%). The low frequency of Ae. albopictus (seven females and two males) did not allow for detailed evaluation.ConclusionsAe. aegypti is well established within the urban area studied, and the frequency of isolation is higher inside the houses. Female density was directly proportional to the number of residents in the houses. Our data show that human population density positively affects the number of Ae. aegypti females within the residence. Meteorological variables also affected mosquito populations. These data indicate a high probability of human-vector contact, increasing the possible transmission and spread of the DEN virus. Entomological indicators of adult females revealed important information complimenting what was obtained with traditional Stegomyia indices. This information should be a part of an interconnected data set for evaluating and controlling the vector.
BackgroundThis study focused on the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus.MethodsEighty ovitraps were exposed for four days of each month in peri- and intradomiciliary environments of 40 urban residences on 20 street blocks that were drawn monthly in Sebastião, SP, between February 2011 and February 2012. The monthly distribution of positive ovitrap indices (POI) and mean egg counts per trap (MET) of Ae. aegypti and Ae. albopictus were analyzed using the Kruskal-Wallis test, followed by the Dwass-Steel-Critchlow-Fligner (DSCF) test. Spearman's rank correlation coefficient and simple linear regression were used to determine the association between the meteorological variables of temperature and rainfall and the number of ovitraps with eggs and the egg count.ResultsThe POI and MET of Ae. aegypti were higher in peridomiciliary premises. A positive correlation was found between the temperature and the number of ovitraps with eggs and the egg count of this species in domestic environments. There was no difference in the POI and MET of Ae. albopictus between the environments. A positive correlation was found between temperature and positive ovitraps of Ae. albopictus in peridomiciliary premises. The POI and MET of Ae. aegypti were higher than those of Ae. albopictus.ConclusionsPeridomiciliary premises were the preferred environments for oviposition of Ae. aegypti. The use of ovitraps for surveillance and vector control is reiterated.
Four time-dependent dengue transmission models are considered in order to fit the incidence data from the City of Campinas, Brazil, recorded from October 1st 1995 to September 30th 2012. The entomological parameters are allowed to depend on temperature and precipitation, while the carrying capacity and the hatching of eggs depend only on precipitation. The whole period of incidence of dengue is split into four periods, due to the fact that the model is formulated considering the circulation of only one serotype. Dengue transmission parameters from human to mosquito and mosquito to human are fitted for each one of the periods. The time varying partial and overall effective reproduction numbers are obtained to explain the incidence of dengue provided by the models.
Dengue fever is a major public health problem worldwide, caused by any of four virus (DENV-1, DENV-2, DENV-3 and DENV-4; Flaviviridae: Flavivirus), transmitted by Aedes aegypti mosquito. Reducing the levels of infestation by A. aegypti is one of the few current strategies to control dengue fever. Entomological indicators are used by dengue national control program to measure the infestation of A. aegypti, but little is known about predictive power of these indicators to measure dengue risk. In this spatial case-control study, we analyzed the spatial distribution of the risk of dengue and the influence of entomological indicators of A. aegypti in its egg, larva-pupa and adult stages occurring in a mid-size city in the state of São Paulo. The dengue cases were those confirmed by the city's epidemiological surveillance system and the controls were obtained through random selection of points within the perimeter of the inhabited area. The values of the entomological indicators were extrapolated for the entire study area through the geostatistical ordinary kriging technique. For each case and control, the respective indicator values were obtained, according with its geographical coordinates and analyzed by using a generalized additive model. Dengue incidence demonstrated a seasonal behavior, as well as the entomological indicators of all mosquito's evolutionary stages. The infestation did not present a significant variation in intensity and was not a limiting or determining factor of the occurrence of cases in the municipality. The risk maps of the disease from crude and adjusted generalized additive models did not present differences, suggesting that areas with the highest values of entomological indicators were not associated with the incidence of dengue. The inclusion of other variables in the generalized additive models may reveal the modulatory effect for the risk of the disease, which is not found in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.