We study the possible phenomenology of a three-family Pati-Salam model constructed from intersecting D6-branes in Type IIA string theory on the T 6 /(Z 2 × Z 2 ) orientifold with some desirable semi-realistic features. In the model, tree-level gauge coupling unification is achieved automatically at the string scale, and the gauge symmetry may be broken to the Standard Model (SM) close to the string scale. The small number of extra chiral exotic states in the model may be decoupled via the Higgs mechanism and strong dynamics. We calculate the possible supersymmetry breaking soft terms and the corresponding low-energy supersymmetric particle spectra which may potentially be tested at the Large Hadron Collider (LHC). We find that for the viable regions of the parameter space the lightest CP-even Higgs boson mass usually satisfies m H ≤ 120 GeV, and the observed dark matter density may be generated. Finally, we find that it is possible to obtain correct SM quark masses and mixings, and the tau lepton mass at the unification scale. Additionally, neutrino masses and mixings may be generated via the seesaw mechanism. Mechanisms to stabilize the open and closed-string moduli, which are necessary for the model to be truly viable and to make definite predictions are discussed.2
We briefly describe a three-family intersecting D6-brane model in Type IIA theory on the T 6 /(Z2 × Z2) orientifold with a realistic phenomenology. In this model, the gauge symmetry can be broken down to the Standard Model (SM) gauge symmetry close to the string scale, and the gauge coupling unification can be achieved. We calculate the supersymmetry breaking soft terms, and the corresponding low energy supersymmetric particle spectrum, which may be tested at the Large Hadron Collider (LHC). The observed dark matter density may also be generated. Finally, we can explain the SM quark masses and CKM mixings, and the tau lepton mass. The neutrino masses and mixings may be generated via the seesaw mechanism as well.
We calculate the spectra of ultrahigh-energy cosmic rays (UHECRs) in an explicit top-down model based on the decays of metastable neutral ''crypton'' states in a flipped SU(5) string model. For each of the eight specific 10th-order superpotential operators that might dominate crypton decays, we calculate the spectra of both protons and photons, using a code incorporating supersymmetric evolution of the injected spectra. For all the decay operators, the total UHECR spectra are compatible with the available data. Also, the fractions of photons are compatible with all the published upper limits, but may be detectable in future experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.