Melatonin effect on body weight progression, mean levels and 24-hr pattern of circulating adiponectin, leptin, insulin, glucose, triglycerides and cholesterol were examined in rats fed a normal or a high-fat diet. In experiment 1, rats fed a normal diet were divided into two groups: receiving melatonin (25 μg/mL drinking water) or vehicle for 9 wk. In experiment 2, animals were divided into three groups: two fed with a high-fat diet (35% fat) and melatonin (25 μg/mL) or vehicle in drinking water for 11 wk, while a third group was given a normal diet (4% fat). At the end of experiments, groups of eight rats were killed at six different time intervals throughout a 24-hr period. Melatonin administration for 9 wk decreased body weight gain from the 3rd wk on without affecting food intake. A significant reduction in circulating insulin, glucose and triglyceride mean levels and disrupted daily patterns of plasma adiponectin, leptin and insulin were observed after melatonin. In high fat-fed rats, melatonin attenuated body weight increase, hyperglycemia and hyperinsulinemia, as well as the increase in mean plasma adiponectin, leptin, triglycerides and cholesterol levels. The high-fat diet disrupted normal 24-hr patterns of circulating adiponectin, insulin and cholesterol, the effects on insulin and cholesterol being counteracted by melatonin. Nocturnal plasma melatonin concentration in control and obese rats receiving melatonin for 11 wk attained values 21-24-fold greater than controls. The results indicate that melatonin counteracts some of the disrupting effects of diet-induced obesity in rats.
Circadian rhythmicity is affected in obese subjects. This article analyzes the effect of a high-fat diet (35% fat) on 24-h changes circulating prolactin, luteinizing hormone (LH), testosterone, corticosterone, thyroid-stimulating hormone (TSH) and glucose, and pineal melatonin content, in rats. When body weight of rats reached the values of morbid obesity, the animals were sacrificed at six different time intervals throughout a 24-h cycle, together with age-matched controls fed a normal diet (4% fat). Plasma hormone levels were measured by specific radioimmunoassays and glucose concentration by an automated glucose oxidase method. In rats under a high-fat diet, a significant disruption of the 24-h pattern of plasma TSH, LH, and testosterone and a slight disruption of prolactin rhythm were found. Additionally, high-fat fed rats showed significantly lower total values of plasma TSH and testosterone and absence of correlation between testosterone and circulating LH levels. Plasma corticosterone levels increased significantly in high-fat fed rats and their 24-h variation became blunted. In obese animals, a significant hyperglycemia developed, individual plasma glucose values correlating with circulating corticosterone in high-fat fed rats only. The amplitude of the nocturnal pineal melatonin peak decreased significantly in high-fat fed rats. The results underlie the significant effects that obesity has on circadian organization of hormone secretion.
The objective of this study was to evaluate the efficacy of melatonin to affect mild inflammation in the metabolic syndrome (MS) induced by a high-fat diet in rats. Adult Wistar male rats were divided into four groups (n = 16/group): (i) control diet (3% fat); (ii) high-fat (35%) diet; (iii) high-fat diet + melatonin; and (iv) melatonin. Rats had free access to high-fat or control chow and one of the following drinking solutions for 10 wk: (a) tap water; (b) 25 μg/mL of melatonin. Plasma interleukin (IL)-1β, IL-4, IL-6, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and C-reactive protein (CRP) were measured at two time intervals, that is, the middle of daylight period and the middle of the scotophase. In addition, a number of somatic and metabolic components employed clinically to monitor the MS were measured. Melatonin decreased the augmented circulating levels of IL-1β, IL-6, TNF-α, IFN-γ, and CRP seen in obese rats and restored the depressed levels of IL-4 and IL-10. Rats fed with the high-fat diet showed significantly higher body weights and augmented systolic blood pressure from the third and fourth week onwards, respectively, melatonin effectively preventing these changes. In high-fat-fed rats, circulating low-density lipoprotein-cholesterol, total cholesterol, and triglyceride concentration augmented significantly, melatonin being effective to counteract these changes. Melatonin-treated rats showed a decreased insulin resistance, the highest values of plasma high-density lipoprotein-cholesterol, and the lowest values of plasma uric acid. The results indicate that melatonin is able to normalize the altered biochemical pro-inflammatory profile seen in rats fed with a high-fat diet.
Metabolic syndrome (MS) patients exhibit sleep/wake disturbances and other circadian abnormalities, and these may be associated with more rapid weight increase and development of diabetes and atherosclerotic disease. On this basis, the successful management of MS may require an ideal drug that besides antagonizing the trigger factors of MS could also correct the disturbed sleep-wake rhythm. Melatonin is an effective chronobiotic agent able to change the phase and amplitude of circadian rhythms. Melatonin has also significant cytoprotective properties preventing a number of MS sequelae in animal models of diabetes and obesity. A small number of controlled trials indicate that melatonin is useful to treat the metabolic and cardiovascular comorbidities of MS. Whether the recently introduced melatonergic agents (ramelteon, agomelatine, tasimelteon) have the potential for treating sleep disorders in MS patients and, more generally, for arresting the progression of disease, merits further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.