In recent years online advertising has become increasingly ubiquitous and effective. Advertisements shown to visitors fund sites and apps that publish digital content, manage social networks, and operate e-mail services. Given such large variety of internet resources, determining an appropriate type of advertising for a given platform has become critical to financial success. Native advertisements, namely ads that are similar in look and feel to content, have had great success in news and social feeds. However, to date there has not been a winning formula for ads in e-mail clients. In this paper we describe a system that leverages user purchase history determined from e-mail receipts to deliver highly personalized product ads to Yahoo Mail users. We propose to use a novel neural language-based algorithm specifically tailored for delivering effective product recommendations, which was evaluated against baselines that included showing popular products and products predicted based on cooccurrence. We conducted rigorous offline testing using a large-scale product purchase data set, covering purchases of more than 29 million users from 172 e-commerce websites. Ads in the form of product recommendations were successfully tested on online traffic, where we observed a steady 9% lift in click-through rates over other ad formats in mail, as well as comparable lift in conversion rates. Following successful tests, the system was launched into production during the holiday season of 2014.
Blogs, discussion forums and social networking sites are an excellent source for people's opinions on a wide range of topics. We examine the application of voting theory to "Information Mashups" -the combining and summarizing of data from the multitude of often-conflicting sources. This paper presents an information mashup in the music domain: a Top 10 artist chart based on user comments and listening behavior from several Web communities.We consider different voting systems as algorithms to combine opinions from multiple sources and evaluate their effectiveness using social welfare functions. Different voting schemes are found to work better in some applications than others. We observe a tradeoff between broad popularity of established artists versus emerging superstars that may only be popular in one community. Overall, we find that voting theory provides a solid foundation for information mashups in this domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.