BackgroundChitosan is the second most abundant nitrogen containing biopolymer in nature, obtained from the shells of crustaceans, particularly crabs, shrimp and lobsters, which are waste products of seafood processing industries. It has great potential application in the areas of biotechnology, biomedicine, food industries, and cosmetics. Chitosan is also capable of adsorbing a number of metal ions as its amino groups can serve as chelation sites. Grafted functional groups such as hydroxyl, carboxyl, sulfate, phosphate, and amino groups on the chitosan have been reported to be responsible for metal binding and sorption of dyes and pigments. The knowledge of their thermal stability and pyrolysis may help to better understand and plan their industrial processing.ResultsThermogravimetric studies of chitosan in air atmosphere were carried out at six rates of linear increasing of the temperature. The kinetics and mechanism of the thermal decomposition reaction were evaluated from the TG data using recommended from ICTAC kinetics committee iso-conversional calculation procedure of Kissinger-Akahira-Sunose, as well as 27 mechanism functions. The comparison of the obtained results showed that they strongly depend on the selection of proper mechanism function for the process. Therefore, it is very important to determine the most probable mechanism function. In this respect the iso-conversional calculation procedure turned out to be the most appropriate.ConclusionChitosan have excellent properties such as hydrophilicity, biocompatibility, biodegradability, antibacterial, non-toxicity, adsorption application. The thermal degradation of chitosan occurs in two stages. The most probable mechanism function for both stages is determined and it was best described by kinetic equations of n-th order (Fn mechanism). For the first stage, it was established that n is equal to 3.0 and for the second stage – to 1.0 respectively. The values of the apparent activation energy E, pre-exponential factor A in Arrhenius equation, as well as the changes of entropy ΔS≠, enthalpy ΔH≠ and free Gibbs energy ΔG≠ for the formation of the activated complex from the reagent are calculated.
ermogravimetric studies on two varieties of calcium carbonate, namely, analytical reagent-grade and in situ product from thermal degradation of calcium oxalate monohydrate, were carried out at four rates of linear increase of the temperature. e kinetics and mechanism of their solid-state thermal decomposition reaction were evaluated from the TG data using four calculation procedures and isoconversion method, as well as 27 mechanism functions. e comparison of the results obtained with these calculation procedures showed that they strongly depend on the selection of proper mechanism function for the process. erefore, it is very important to determine the most probable mechanism function. In this respect the isoconversion calculation procedure turned out to be more appropriate. In the present work, the values of apparent activation energy E, preexponential factor A in Arrhenius equation, as well as the changes of entropy Δ ≠ , enthalpy Δ ≠ , and free Gibbs energy Δ ≠ for the formation of the activated complex from the reagent are calculated. All calculations were performed using programs compiled by ourselves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.