Slim peaks: Using a perdeuterated protein recrystallized from a 10:90 H2O:D2O mixture in magic‐angle spinning (MAS) solid‐state NMR spectroscopy experiments gives small 1H line widths at moderate spinning frequencies without application of homonuclear decoupling. This labeling strategy opens new perspectives for assignment of large protein spin systems.
A reliable site-specific estimate of the individual N-H bond lengths in the protein backbone is the fundamental basis of any relaxation experiment in solution and in the solid-state NMR. The N-H bond length can in principle be influenced by hydrogen bonding, which would result in an increased N-H distance. At the same time, dynamics in the backbone induces a reduction of the experimental dipolar coupling due to motional averaging. We present a 3D dipolar recoupling experiment in which the (1)H,(15)N dipolar coupling is reintroduced in the indirect dimension using phase-inverted CP to eliminate effects from rf inhomogeneity. We find no variation of the N-H dipolar coupling as a function of hydrogen bonding. Instead, variations in the (1)H,(15)N dipolar coupling seem to be due to dynamics of the protein backbone. This is supported by the observed correlation between the H(N)-N dipolar coupling and the amide proton chemical shift. The experiment is demonstrated for a perdeuterated sample of the alpha-spectrin SH3 domain. Perdeuteration is a prerequisite to achieve high accuracy. The average error in the analysis of the H-N dipolar couplings is on the order of +/-370 Hz (+/-0.012 A) and can be as small as 150 Hz, corresponding to a variation of the bond length of +/-0.005 A.
Previously, Ishii et al., could show that chelated paramagnetic ions can be employed to significantly decrease the recycle delay of a MAS solid-state NMR experiment [N.P. Wickramasinghe, M. Kotecha, A. Samoson, J. Past, Y. Ishii, Sensitivity enhancement in C-13 solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing H-1 T-1 relaxation, J. Magn. Reson. 184 (2007) 350-356]. Application of the method is limited to very robust samples, for which sample stability is not compromised by RF induced heating. In addition, probe integrity might be perturbed in standard MAS PRE experiments due to the use of very short duty cycles. We show that these deleterious effects can be avoided if perdeuterated proteins are employed that have been re-crystallized from D 2 O:H 2 O = 9:1 containing buffer solutions. The experiments are demonstrated using the SH3 domain of chicken a-spectrin as a model system. The labeling scheme allows to record proton detected 1 H, 15 N correlation spectra with very high resolution in the absence of heteronuclear dipolar decoupling. Cu-edta as a doping reagent yields a reduction of the recycle delay by up to a factor of 15. In particular, we find that the 1 H T 1 for the bulk H N magnetization is reduced from 4.4 s to 0.3 s if the Cu-edta concentration is increased from 0 mM to 250 mM. Possible perturbations like chemical shift changes or line broadening due to the paramagnetic chelate complex are minimal. No degradation of our samples was observed in the course of the experiments.
In this communication, we demonstrate the feasibility of 1H detection in MAS solid-state NMR for a microcrystalline, uniformly 2H,15N-labeled sample of a SH3 domain of chicken alpha-spectrin, using pulsed field gradients for suppression of water magnetization. Today, B0 gradients are employed routinely in solution-state NMR for coherence order selection and solvent suppression. We suggest to use gradients to purge water magnetization which cannot be suppressed using conventional water suppression schemes. The achievable gain in sensitivity for 1H detection is in the order of 5 compared to the 15N detected version of the experiment (at a MAS rotation frequency of 13.5 kHz). We expect that this labeling concept which achieves high sensitivity due to 1H detection, in combination with the possibility to measure long range 1H-1H distances as we have shown previously, to be a useful tool for the determination of protein structures in the solid state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.