Proteins and, in particular, plant-based proteins are becoming more and more important in the face of future challenges, resulting from continuous population growth, the imbalance between malnutrition and overweight/obesity, and environmental changes. Recent developments open new avenues for improving the quality and sustainable production of plant proteins. Increasing knowledge on the key drivers of the off-flavor of plant proteins, which currently limit their use, supports new strategies to reach full flavor experience, thus enhancing consumer acceptance. Current limitations and future directions for improving the flavor profiles of plant-based proteins are discussed in this perspective.
The usefulness of anti-inflammatory drugs as an adjunct therapy to improve outcomes in COVID-19 patients is intensely discussed in this paper. Willow bark (Salix cortex) has been used for centuries to relieve pain, inflammation, and fever. Its main active ingredient, salicin, is metabolized in the human body into salicylic acid, the precursor of the commonly used pain drug acetylsalicylic acid (ASA). Here, we report on the in vitro anti-inflammatory efficacy of two methanolic Salix extracts, standardized to phenolic compounds, in comparison to ASA in the context of a SARS-CoV-2 peptide challenge. Using SARS-CoV-2 peptide/IL-1β- or LPS-activated human PBMCs and an inflammatory intestinal Caco-2/HT29-MTX co-culture, Salix extracts, and ASA concentration-dependently suppressed prostaglandin E2 (PGE2), a principal mediator of inflammation. The inhibition of COX-2 enzyme activity, but not protein expression was observed for ASA and one Salix extract. In activated PBMCs, the suppression of relevant cytokines (i.e., IL-6, IL-1β, and IL-10) was seen for both Salix extracts. The anti-inflammatory capacity of Salix extracts was still retained after transepithelial passage and liver cell metabolism in an advanced co-culture model system consisting of intestinal Caco-2/HT29-MTX cells and differentiated hepatocyte-like HepaRG cells. Taken together, our in vitro data suggest that Salix extracts might present an additional anti-inflammatory treatment option in the context of SARS-CoV-2 peptides challenge; however, more confirmatory data are needed.
Soy sauce, one of the most common Asian fermented foods, exhibits a distinctive savory taste profile. In the present study, targeted quantitation of literature-known taste compounds, calculation of dose-over-threshold factors, and taste re-engineering experiments enabled the identification of 34 key tastants. Following the sensoproteomics approach, 14 umami-, kokumi-, and saltenhancing peptides were identified for the first time, with intrinsic taste threshold concentrations in the range of 166−939 μmol/L and taste-modulating threshold concentrations ranging from 42 to 420 μmol/L. The lowest taste-modulating threshold concentrations were found for the leucyl peptide LDYY with an umami-and salt-enhancing threshold of 42 μmol/L. Addition of the 14 newly identified peptides to the taste recombinate (aRec Dipeptides ) increased the overall taste intensity and mouthfulness of the recombinate, and comparison with the authentic soy sauce confirmed the identification of all key tastants. Finally, these data as well as the quantitative profiling of several (non)-fermented foods highlight the importance of fermentation with respect to taste formation. On the basis of this knowledge, microorganisms with specific digestion patterns may be used to tailor the taste profile and especially the salt taste sensation of soy sauces.
An ultra-high-performance liquid chromatography−differential ion mobility (DMS)−tandem mass spectrometry method was developed to quantify 14 bitter-tasting lipids in 17 commercial pea-protein isolates (Pisum sativum L.). The DMS technology enabled the simultaneous quantification of four hydroxyoctadecadienoic acid isomers, namely, (10E,12Z)-9hydroxyoctadeca-10,12-dienoic acid ( 5), (10E,12E)-9-hydroxyoctadeca-10,12-dienoic acid ( 6), (9Z,11E)-13-hydroxyoctadeca-9,11-dienoic acid (7), and (9E,11E)-13-hydroxyoctadeca-9,11-dienoic acid (8). Based on quantitative data and human bitter taste recognition thresholds, dose-over-threshold factors were determined to evaluate the individual lipids' bitter impact and compound classes. The free fatty acids α-linolenic acid (10) and linoleic acid (13), as well as the trihydroxyoctadecenoic acids, especially 9,10,11-trihydroxyoctadec-12-enoic (3), and 11,12,13-trihydroxyoctadec-9-enoic acids (4), were shown to be key inducers to bitterness in the isolates. Additionally, the impact of 1-linoleoyl glycerol (9) on the bitter taste could be shown for 14 of the 17 tested pea-protein isolates.
Bioactive plant compounds and extracts are of special interest for the development of pharmaceuticals. Here, we describe the screening of more than 1100 aqueous plant extracts and synthetic reference compounds for their ability to stimulate or inhibit insulin secretion. To quantify insulin secretion in living MIN6 β cells, an insulin–Gaussia luciferase (Ins-GLuc) biosensor was used. Positive hits included extracts from Quillaja saponaria, Anagallis arvensis, Sapindus mukorossi, Gleditsia sinensis and Albizia julibrissin, which were identified as insulin secretion stimulators, whereas extracts of Acacia catechu, Myrtus communis, Actaea spicata L., Vaccinium vitis-idaea and Calendula officinalis were found to exhibit insulin secretion inhibitory properties. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to characterize several bioactive compounds in the selected plant extracts, and these bioactives were retested for their insulin-modulating properties. Overall, we identified several plant extracts and some of their bioactive compounds that may be used to manipulate pancreatic insulin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.