Anomaly detection (AD) in hyperspectral data has received a lot of attention for various applications. The aim of anomaly detection is to detect pixels in the hyperspectral data cube whose spectra differ significantly from the background spectra. Many anomaly detectors have been proposed in literature. They differ by the way the background is characterized and by the method used for determining the difference between the current pixel and the background. The most well-known anomaly detector is the RX detector that calculates the Mahalanobis distance between the pixel under test (PUT) and the background. Global RX characterizes the background of the complete scene by a single multi-variate normal distribution. In many cases this model is not appropriate for describing the background. For that reason a variety of other anomaly detection methods have been developed. This paper examines three classes of anomaly detectors: sub-space methods, local methods and segmentation-based methods. Representative examples of each class are chosen and applied on a set of hyperspectral data with different backgrounds. The results are evaluated and compared.
International audienceThis paper presents a new algorithm for the analysis of linear spectral mixtures in the thermal infrared domain, with the goal to jointly estimate the abundance and the subpixel temperature in a mixed pixel, i.e., to estimate the relative proportion and the temperature of each material composing the mixed pixel. This novel approach is a two-step procedure. First, it estimates the emissivity and the temperature over pure pixels using the standard temperature and emissivity separation (TES) algorithm. Second, it estimates the abundance and the subpixel temperature using a new unmixing physics-based model, called Thermal Remote sensing Unmixing for Subpixel Temperature (TRUST). This model is based on an estimator of the subpixel temperature obtained by linearizing the black body law around the mean temperature of each material. The abundance is then retrieved by minimizing the reconstruction error with the estimation of the subpixel temperatures. The TRUST method is benchmarked on simulated scenes against the fully constrained least squares unmixing applied on the radiance and on the estimation of surface emissivity using the TES algorithm. The TRUST method shows better results on pure and mixed pixels composed of two materials. TRUST also shows promising results when applied on thermal hyperspectral data acquired with the Thermal Airborne Spectrographic Imager during the Detection in Urban scenario using Combined Airborne imaging Sensors campaign and estimates coherent localization of mixed-pixel areas
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.