Recent development of ultra-low-field (ULF) MRI presents opportunities for low-power, shielding-free, and portable clinical applications at a fraction of the cost. However, its performance remains limited by poor image quality. Here, a computational approach is formulated to advance ULF MR brain imaging through deep learning of large-scale publicly available 3T brain data. Methods: A dual-acquisition 3D superresolution model is developed for ULF brain MRI at 0.055 T. It consists of deep cross-scale feature extraction, attentional fusion of two acquisitions, and reconstruction. Models for T 1 -weighted and T 2 -weighted imaging were trained with 3D ULF image data sets synthesized from the high-resolution 3T brain data from the Human Connectome Project.They were applied to 0.055T brain MRI with two repetitions and isotropic 3-mm acquisition resolution in healthy volunteers, young and old, as well as patients. Results:The proposed approach significantly enhanced image spatial resolution and suppressed noise/artifacts. It yielded high 3D image quality at 0.055 T for the two most common neuroimaging protocols with isotropic 1.5-mm synthetic resolution and total scan time under 20 min. Fine anatomical details were restored with intrasubject reproducibility, intercontrast consistency, and confirmed by 3T MRI. Conclusion:The proposed dual-acquisition 3D superresolution approach advances ULF MRI for quality brain imaging through deep learning of high-field brain data. Such strategy can empower ULF MRI for low-cost brain imaging, especially in point-of-care scenarios or/and in low-income and mid-income countries.
Purpose: To develop a joint denoising method that effectively exploits natural information redundancy in MR DWIs via low-rank patch matrix approximation. Methods: A denoising method is introduced to jointly reduce noise in DWI dataset by exploiting nonlocal self-similarity as well as local anatomical/structural similarity within multiple 2D DWIs acquired with the same anatomical geometry but different diffusion directions. Specifically, for each small 3D reference patch sliding within 2D DWI, nonlocal but similar patches are searched by matching image contents within entire DWI dataset and then structured into a patch matrix. The resulting patch matrices are denoised by enforcing low-rankness via weighted nuclear norm minimization and finally are back-distributed to DWI space. The proposed procedure was evaluated with simulated and in vivo brain diffusion tensor imaging (DTI) datasets and then compared to existing Marchenko-Pastur principal component analysis denoising method. Results:The proposed method achieved significant noise reduction while preserving structural details in all DWIs for both simulated and in vivo datasets.Quantitative evaluation of error maps demonstrated it consistently outperformed Marchenko-Pastur principal component analysis method. Further, the denoised DWIs led to substantially improved DTI parametric maps, exhibiting significantly less noise and revealing more microstructural details. Conclusion:The proposed method denoises DWI dataset by utilizing both nonlocal self-similarity and local structural similarity within DWI dataset. This weighted nuclear norm minimization-based low-rank patch matrix denoising approach is effective and highly applicable to various diffusion MRI applications, including DTI as a postprocessing procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.