Immuno-positron
emission tomography (immunoPET) with 89Zr-labeled antibodies
has shown great potential in cancer imaging.
It can provide important information about the pharmacokinetics and
tumor-targeting properties of monoclonal antibodies and may help in
anticipating on toxicity. Furthermore, it allows accurate dose planning
for individualized radioimmunotherapy and may aid in patient selection
and early-response monitoring for targeted therapies. The most commonly
used chelator for 89Zr is desferrioxamine (DFO). Preclinical
studies have shown that DFO is not an ideal chelator because the 89Zr–DFO complex is partly unstable in vivo, which results
in the release of 89Zr from the chelator and the subsequent
accumulation of 89Zr in bone. This bone accumulation interferes
with accurate interpretation and quantification of bone uptake on
PET images. Therefore, there is a need for novel chelators that allow
more stable complexation of 89Zr. In this Review, we will
describe the most recent developments in 89Zr radiochemistry,
including novel chelators and site-specific conjugation methods.
N-myristoylation is the irreversible attachment of a C(14) fatty acid, myristic acid, to the N-terminal glycine of a protein via formation of an amide bond. This modification is catalyzed by myristoyl-coenzyme A (CoA):protein N-myristoyltransferase (NMT), an enzyme ubiquitous in eukaryotes that is up-regulated in several cancers. Here we report a sensitive fluorescence-based assay to study the enzymatic activity of human NMT1 and NMT2 based on detection of CoA by 7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin. We also describe expression and characterization of NMT1 and NMT2 and assay validation with small molecule inhibitors. This assay should be broadly applicable to NMTs from a range of organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.