The research community has considered in the past the application of Artificial Intelligence (AI) techniques to control and operate networks. A notable example is the Knowledge Plane proposed by D.Clark et al. However, such techniques have not been extensively prototyped or deployed in the field yet. In this paper, we explore the reasons for the lack of adoption and posit that the rise of two recent paradigms: Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate the adoption of AI techniques in the context of network operation and control. We describe a new paradigm that accommodates and exploits SDN, NA and AI, and provide use cases that illustrate its applicability and benefits. We also present simple experimental results that support its feasibility. We refer to this new paradigm as Knowledge-Defined Networking (KDN).Comment: 8 pages, 22 references, 6 figures and 1 tabl
As the complexity of enterprise systems increases, the need for monitoring and analyzing such systems also grows. A number of companies have built sophisticated monitoring tools that go far beyond simple resource utilization reports. For example, based on instrumentation and specialized APIs, it is now possible to monitor single method invocations and trace individual transactions across geographically distributed systems. This high-level of detail enables more precise forms of analysis and prediction but comes at the price of high data rates (i.e., big data). To maximize the benefit of data monitoring, the data has to be stored for an extended period of time for ulterior analysis. This new wave of big data analytics imposes new challenges especially for the application performance monitoring systems. The monitoring data has to be stored in a system that can sustain the high data rates and at the same time enable an up-to-date view of the underlying infrastructure. With the advent of modern key-value stores, a variety of data storage systems have emerged that are built with a focus on scalability and high data rates as predominant in this monitoring use case.In this work, we present our experience and a comprehensive performance evaluation of six modern (open-source) data stores in the context of application performance monitoring as part of CA Technologies initiative. We evaluated these systems with data and workloads that can be found in application performance monitoring, as well as, on-line advertisement, power monitoring, and many other use cases. We present our insights not only as performance results but also as lessons learned and our experience relating to the setup and configuration complexity of these data stores in an industry setting.
In-memory cluster computing platforms have gained momentum in the last years, due to their ability to analyse big amounts of data in parallel. These platforms are complex and difficult-to-manage environments. In addition, there is a lack of tools to better understand and optimize such platforms that consequently form backbone of big data infrastructure and technologies. This directly leads to underutilization of available resources and application failures in such environment. One of the key aspects that can address this problem is optimization of the task parallelism of application in such environments. In this paper, we propose a machine learning based method that recommends optimal parameters for task parallelization in big data workloads. By monitoring and gathering metrics at system and application level, we are able to find statistical correlations that allow us to characterize and predict the effect of different parallelism settings on performance. These predictions are used to recommend an optimal configuration to users before launching their workloads in the cluster, avoiding possible failures, performance degradation and wastage of resources. We evaluate our method with a benchmark of 15 Spark applications on the Grid5000 testbed. We observe up to a 51% gain on performance when using the recommended parallelism settings. The model is also interpretable and can give insights to the user into how different metrics and parameters affect the performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.