Key Points• Germline GATA2 mutations account for 15% of advanced and 7% of all primary pediatric MDS and do not influence overall survival. • The majority (72%) of adolescents with MDS and monosomy 7 carry an underlying GATA2 deficiency.Germline GATA2 mutations cause cellular deficiencies with high propensity for myeloid disease. We investigated 426 children and adolescents with primary myelodysplastic syndrome (MDS) and 82 cases with secondary MDS enrolled in 2 consecutive prospective studies of the European Working Group of MDS in Childhood (EWOG-MDS) conducted in Germany over a period of 15 years. Germline GATA2 mutations accounted for 15% of advanced and 7% of all primary MDS cases, but were absent in children with MDS secondary to therapy or acquired aplastic anemia. Mutation carriers were older at diagnosis and more likely to present with monosomy 7 and advanced disease compared with wild-type cases. For stratified analysis according to karyotype, 108 additional primary MDS patients registered with EWOG-MDS were studied. Overall, we identified 57 MDS patients with germline GATA2 mutations. GATA2 mutations were highly prevalent among patients with monosomy 7 (37%, all ages) reaching its peak in adolescence (72% of adolescents with monosomy 7). Unexpectedly, monocytosis was more frequent in GATA2-mutated patients. However, when adjusted for the selection bias from monosomy 7, mutational status had no effect on the hematologic phenotype. Finally, overall survival and outcome of hematopoietic stem cell transplantation (HSCT) were not influenced by mutational status. This study identifies GATA2 mutations as the most common germline defect predisposing to pediatric MDS with a very high prevalence in adolescents with monosomy 7. GATA2 mutations do not confer poor prognosis in childhood MDS. However, the high risk for progression to advanced disease must guide decision-making toward timely
Mucopolysaccharidosis type I-Hurler syndrome (MPS-IH) is a lysosomal storage disease characterized by multisystem morbidity and death in early childhood. Although hematopoietic cell transplantation (HCT) has been performed in these patients for more than 30 years, large studies on the long-term outcome of patients with MPS-IH after HCT are lacking. The goal of this international study was to identify predictors of the long-term outcome of patients with MPS-IH after successful HCT. Two hundred seventeen patients with MPS-IH successfully engrafted with a median follow-up age of 9.2 years were included in this retrospective analysis. Primary endpoints were neurodevelopmental outcomes and growth. Secondary endpoints included neurologic, orthopedic, cardiac, respiratory, ophthalmologic, audiologic, and endocrinologic outcomes. Considerable residual disease burden was observed in the majority of the transplanted patients with MPS-IH, with high variability between patients. Preservation of cognitive function at HCT and a younger age at transplantation were major predictors for superior cognitive development posttransplant. A normal alpha-L-iduronidase enzyme level obtained post-HCT was another highly significant predictor for superior long-term outcome in most organ systems. The long-term prognosis of patients with MPS-IH receiving HCT can be improved by reducing the age at HCT through earlier diagnosis, as well as using exclusively noncarrier donors and achieving complete donor chimerism
Mutations in genes encoding proteins that are involved in mitochondrial heme synthesis, iron-sulfur cluster biogenesis, and mitochondrial protein synthesis have previously been implicated in the pathogenesis of the congenital sideroblastic anemias (CSAs). We recently described a syndromic form of CSA associated with B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Here we demonstrate that SIFD is caused by biallelic mutations in TRNT1, the gene encoding the CCA-adding enzyme essential for maturation of both nuclear and mitochondrial transfer RNAs. Using budding yeast lacking the TRNT1 homolog, CCA1, we confirm that the patient-associated TRNT1 mutations result in partial loss of function of TRNT1 and lead to metabolic defects in both the mitochondria and cytosol, which can account for the phenotypic pleiotropy
Leukodystrophies (LD) are devastating inherited disorders leading to rapid neurological deterioration and premature death. Hematopoietic stem cell transplantation (HSCT) can halt disease progression for selected LD. Cord blood is a common donor source for transplantation of these patients because it is rapidly available and can be used without full HLA matching. However, precise recommendations allowing care providers to identify patients who benefit from HSCT are lacking. In this study, we define risk factors and describe the early and late outcomes of 169 patients with globoid cell leukodystrophy, X-linked adrenoleukodystrophy, and metachromatic leukodystrophy undergoing cord blood transplantation (CBT) at an European Society for Blood and Marrow Transplantation center or at Duke University Medical Center from 1996 to 2013. Factors associated with higher overall survival (OS) included presymptomatic status (77% vs 49%; = .006), well-matched (≤1 HLA mismatch) CB units (71% vs 54%; = .009), and performance status (PS) of >80 vs <60 or 60 to 80 (69% vs 32% and 55%, respectively; = .003). For patients with PS≤60 (n = 20) or 60 to 80 (n = 24) pre-CBT, only 4 (9%) showed improvement. Of the survivors with PS>80 pre-CBT, 50% remained stable, 20% declined to 60 to 80, and 30% to <60. Overall, an encouraging OS was found for LD patients after CBT, especially for those who are presymptomatic before CBT and received adequately dosed grafts. Early identification and fast referral to a specialized center may lead to earlier treatment and, subsequently, to improved outcomes.
After allogeneic hematopoietic stem-cell transplantation (allo-HSCT), EBV infections can be potentially dangerous and even life threatening. We evaluated the EBV viremia in 80 consecutive allo-HSCT with quantitative EBV-PCR every 2 weeks during the first 3 months and monthly thereafter until 1 yr after allo-HSCT or until death. We found a significantly more frequent viremia in patients who had in vivo T-cell depletion in which 23 out of 51 (45%) had EBV-PCR positivity. The EBV virus load was also significantly higher in the in vivo T-cell depleted group. Three patients developed clinical symptoms of EBV-PTLD and were treated with monoclonal anti-CD20 antibodies. No EBV- driven mortality was seen in this cohort. In our opinion EBV-PCR monitoring is mandatory after allo-HSCT. Most of the patients with EBV viremia had a good evolution after tapering the immune suppression, so this should be the first-line management of pediatric patients with EBV viremia. Monoclonal anti-CD20 antibodies should be reserved for those patients with early symptoms of EBV-PTLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.