Synaptic transmission is essential for nervous system function, and its dysfunction is a known major contributing factor to Alzheimer’s-type dementia. Antigen-specific immunochemical methods are able to characterize synapse loss in dementia through the quantification of various synaptic proteins involved in the synaptic cycle. These immunochemical methods applied to the study of Alzheimer’s disease (AD) brain specimens have correlated synaptic loss with particularly toxic forms of amyloid-β protein and have also established synapse loss as the best correlate of dementia severity. A significant but comparatively circumscribed amount of literature describes synaptic decline in other forms of dementia. Ischemic vascular dementia (IVD) is quite heterogeneous, and synapse loss in IVD seems to be variable among IVD subtypes, probably reflecting its variable neuropathologic correlates. Loss of synaptic protein has been identified in vascular dementia of the Binswanger type and Spatz-Lindenberg’s disease. Here we demonstrate a significant loss of synaptophysin density within the temporal lobe of frontotemporal dementia (FTD) patients.
Clinicians frequently assess asymmetry in strength, flexibility, and performance characteristics as a method of screening for potential musculoskeletal injury. The identification of asymmetry in countermovement jumps may be an ideal method to reveal asymmetry in other lower extremity characteristics such as strength that otherwise may require additional testing, potentially reducing the time and burden on both the athlete and clinicians. The present study aims to examine the ability of asymmetry in both the single-leg and two-leg countermovement jump tests to accurately detect hip abduction, hip adduction, and eccentric hamstring strength asymmetry. Fifty-eight young male elite soccer players from the same professional academy performed a full battery of functional performance tests which included an assessment of hip adductor and abductor strength profiles, eccentric hamstring strength profiles, and neuromuscular performance and asymmetries during countermovement jumps. Bilateral variables attained from both the single-leg and two-leg countermovement jump tests included concentric impulse (Ns), eccentric mean force (N), and concentric mean force (N) computed by the VALD ForceDecks software. Average maximal force (N) was calculated bilaterally for the strength assessments. Asymmetry was calculated for each variable using 100 × |(right leg − left leg)/(right leg)| and grouped into three categories: 0 to <10%, 10% to <20%, and 20% or greater. Analyses were performed for the two higher asymmetry groups. The accuracy to detect strength asymmetry was assessed as the sensitivity, specificity, and predictive values for positive and negative tests. The outcomes from the accuracy assessments suggest that the single-leg countermovement jump concentric impulse variable at the 20% threshold is indicative of a youth male soccer player having hip adduction strength asymmetry while also demonstrating more accuracy and applicability than the two-leg countermovement jump concentric impulse variable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.