This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs) trained via the stochastic diagonal Levenberg-Marquardt (S-DLM) algorithm. The CNNs utilize the spectral energy maps (SEMs) of the acoustic emission (AE) signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing’s speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds.
Incipient defects in bearings are traditionally diagnosed either by developing discriminative models for features that are extracted from raw acoustic emission (AE) signals, or by detecting peaks at characteristic defect frequencies in the envelope power spectrum of the AE signals. Under variable speed conditions, however, such methods do not yield the best results. This letter proposes a technique for diagnosing incipient bearing defects under variable speed conditions, by extracting features from different sub-bands of the inherently non-stationary AE signal, and then classifying bearing defects using a weighted committee machine, which is an ensemble of support vector machines and artificial neural networks. The proposed method also improves the generalization performance of the neural networks to enhance their classification accuracy, particularly with limited training data.
The purpose of this study is to characterize fracture modes in a concrete structure using an acoustic emission (AE) technique and a data-driven approach. To clarify the damage fracture process, the specimens, which are of reinforced concrete (RC) beams, undergo four-point bending tests. During bending tests, impulses occurring in the AE signals are automatically detected using a constant false-alarm rate (CFAR) algorithm. For each detected impulse, its acoustic emission parameters such as counts, duration, amplitude, risetime, energy, RA, AF are calculated and studied. The mean and standard deviation values of each of these parameters are computed in every 1-second AE signal and are considered as features demonstrating the damage status of concrete structures. The results revealed that as the damage level in concrete structures grows, these features also change accordingly which can be used to categorize the damage fracture stages. The study also carries out experiments to validate the efficiency of the proposed approaches in terms of visual and qualitative evaluations. Experimental results show that the proposed characterizing model is promising and outstanding with the classification performance in the experimental environment of over 82%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.