Electronic interactions between metal nanoparticles and oxide supports control the functionality of nanomaterials, for example, the stability, the activity and the selectivity of catalysts. Such interactions involve electron transfer across the metal/support interface. In this work we quantify this charge transfer on a well-defined platinum/ceria catalyst at particle sizes relevant for heterogeneous catalysis. Combining synchrotron-radiation photoelectron spectroscopy, scanning tunnelling microscopy and density functional calculations we show that the charge transfer per Pt atom is largest for Pt particles of around 50 atoms. Here, approximately one electron is transferred per ten Pt atoms from the nanoparticle to the support. For larger particles, the charge transfer reaches its intrinsic limit set by the support. For smaller particles, charge transfer is partially suppressed by nucleation at defects. These mechanistic and quantitative insights into charge transfer will help to make better use of particle size effects and electronic metal-support interactions in metal/oxide nanomaterials.
Adsorption of CO on nanosize Pd particles was studied theoretically by density functional method and spectroscopically by means of infrared reflection absorption spectroscopy (IRAS) and sum frequency generation (SFG). A density functional approach was applied to three-dimensional crystallites of about 140 atoms. The model clusters were chosen as octahedral fragments of the face centered cubic (fcc) bulk, exhibiting (111) and (001) facets. Bare and adsorbate-decorated cluster models were calculated with O h symmetry constraints. Various types of adsorption sites were inspected: 3-fold hollow, bridge, and on-top positions at (111) facets; 4-fold hollow and on-top sites at (001) facets; bridge positions at cluster edges; on-top positions at cluster corners; and on single Pd atoms deposited at regular (111) facets. Adsorption properties of the relatively small regular cluster facets (111) and (001) are calculated similar to those of corresponding ideal (infinite) Pd surfaces. However, the strongest CO bonding was calculated for the bridge positions at cluster edges. The energy of adsorption on-top of low-coordinated Pd centers (kinks) is also larger than that for on-top sites of (111) and (001) facets. To correlate the theoretical results with spectroscopic data, vibrational spectra of CO adsorbed on supported Pd nanocrystallites of different size and structure (well-faceted and defect-rich) were measured using IRAS and SFG. For CO adsorption under ultrahigh vacuum conditions, a characteristic absorption in the frequency region 1950−1970 cm-1 was observed, which in agreement with the theoretical data was assigned to vibrations of bridge-bonded CO at particle edges and defects. SFG studies carried out at CO pressures up to 200 mbar showed that the edge-related species was still present under catalytic reaction conditions. By decomposition of methanol leading to the formation of carbon species, these sites can be selectively modified. As a result, CO occupies on-top positions at particle edges and defects. On the basis of the computational data, the experimentally observed differences in CO adsorption on alumina-supported Pd nanoparticles of different size and surface quality are interpreted. Differences between adsorption properties of Pd nanoparticles with a large fraction of (111) facets and adsorption properties of an ideal Pd(111) surface are also discussed.
To identify the nature and the local structure of the surface of supported catalyst nanoparticles, we have performed a detailed comparative study of CO adsorption on two categories of oxide-supported Palladium catalysts: (1) polycrystalline MgO and γ-Al2O3 supported Pd metal catalysts prepared by impregnation techniques and characterized by different degrees of regularity and perfection and (2) single-crystal based Pd model catalysts prepared under ultrahigh vacuum (UHV) conditions. The assignment of the CO vibrational frequencies to different types of sites on these systems has allowed a detailed structural characterization. For the Pd model catalyst, at low CO coverage, the infrared (IR) reflection absorption spectra closely resemble the expected behavior for terminations by a majority of (111) facets and a minority of (100) facets. The spectral features are indicative of defect sites such as particle steps and edges. Occupation of the defect sites can be affected by surface contaminations such as atomic carbon. Thus the CO spectra at high coverage can be used as both a structural and chemical probe under reaction conditions, provided that complementary information on the particle morphology is available. For the MgO and γ-Al2O3 supported Pd systems, two distinct narrow bands (ν ≅ 2070 and ≅ 1970 cm-1) have been assigned to linearly bonded and bridge-bonded CO species, on Pd (100)/(111) edges or facets, in agreement with the previous results obtained on model catalysts. The broad character of the 2070 cm-1 feature indicates the simultaneous presence of (100) and (111) faces, with edge and corner sites present at their intersection. The high intensity and the small half-width (fwhm) of the band at 1970 cm-1 on a Pd/MgO sample treated at high temperature, assigned to bridge-bonded CO species, suggests that the metal particles expose faces with a high level of regularity. Further spectroscopic features (ν ≅ 1920−1800 cm-1), are ascribed to the presence of different types of 3-fold hollow sites on (111) faces.
We have studied the interaction of water with stoichiometric CeO 2 (111)/Cu(111), partially reduced CeO 2−x /Cu(111), and Pt/CeO 2 / Cu(111) model catalysts by means of synchrotron−radiation photoelectron spectroscopy (SRPES), resonant photoemission spectroscopy (RPES) at the Ce 4d edge, infrared reflection absorption spectroscopy (IRAS), and density functional (DF) calculations. The principal species formed during adsorption of water at 160 K on CeO 2 (111) films is chemisorbed molecular water. On the surface of CeO 2−x water partially dissociates yielding hydroxyl groups. By use of core-level PES, differentiation between chemisorbed water and hydroxyl groups is complicated by the overlap of the corresponding spectral features. Nevertheless, we determined three characteristic indicators for OH groups on ceria: (i) the presence of 1π and 3σ states in valence band (VB) PES; (ii) an increase of the binding energy (BE) separation between the O 1s spectral components of lattice oxygen and OH/H 2 O; (iii) an increase of the amplitude of the Ce 3+ resonance in RPES. Chemisorbed water desorbs below 400 K and hydroxyl groups vanish at 500 K. The most favorable configurations of chemisorbed water and hydroxyl groups have been investigated by DF calculations. Both CeO 2 (111) and CeO 2−x involve strongly tilted H 2 O and OH species which complicate their detection by IRAS. On Pt/CeO 2 , water adsorbs molecularly at 160 K but undergoes partial dissociation during annealing. The dissociation of water is accompanied by spillover of hydrogen to ceria and formation of hydroxyl groups between 180 and 250 K. Above 250 K, decomposition of hydroxyl groups and reverse spillover of hydrogen from ceria to Pt occurs, followed by desorption of molecular water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.