Efficiently excite nitrogen-vacancy (NV) centers in diamond and collect their fluorescence significantly benefit the fiber-optic-based NV sensors. Here, using a tapered optical fiber (TOF) tip, we significantly improve the efficiency of the laser excitation and fluorescence collection of the NV, thus enhance the sensitivity of the fiber-optic based micron-sized diamond magnetic sensor. Numerical calculation shows that the TOF tip delivers a high numerical aperture (NA) and has a high fluorescence excitation and collection efficiency. Experiments demonstrate that using such TOF tip can obtain up to over 7-fold the fluorescence excitation efficiency and over15-fold the fluorescence collection efficiency of a flat-ended (non-TOF) fiber. Such fluorescence collection enhances the sensitivity of the optical fiber-based diamond NV magnetometer, thus extending its potential application region.
The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe’s sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz–392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 103, and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.
We experimentally demonstrate a simple and robust optical fibers based method to achieve simultaneously efficient excitation and fluorescence collection from Nitrogen-Vacancy (NV) defects containing micro-crystalline diamond. We fabricate a suitable micro-concave (MC) mirror that focuses scattered excitation laser light into the diamond located at the focal point of the mirror. At the same instance, the mirror also couples the fluorescence light exiting out of the diamond crystal in the opposite direction of the optical fiber back into the optical fiber within its light acceptance cone. This part of fluorescence would have been otherwise lost from reaching the detector. Our proof-of-principle demonstration achieves a 25 times improvement in fluorescence collection compared to the case of not using any mirrors. The increase in light collection favors getting high signal-to-noise ratio (SNR) optically detected magnetic resonance (ODMR) signals hence offers a practical advantage in fiber-based NV quantum sensors. Additionally, we compacted the NV sensor system by replacing some bulky optical elements in the optical path with a 1 × 2 fiber optical coupler in our optical system. This reduces the complexity of the system and provides portability and robustness needed for applications like magnetic endoscopy and remote-magnetic sensing.Negatively charged Nitrogen-Vacancy (NV) color center in diamond is a promising candidate for quantum information processing and spin-based quantum sensing of magnetic fields 1-3 , electric fields 4,5 and temperatures 6-8 . To efficiently use NV center in these applications, enhancing the excitation and collection of the color-center's fluorescence is demanded. For instance a high fluorescence collection efficiency would benefit precision metrology. Some methods; for example, circular gratings 9,10 or a solid immersion lenses (SIL) 11-13 , when fabricated on diamond substrates, extracts more fluorescence from a single NV center out of the high refractive index (∼2.4) material. While Micro/nanoresonator cavities and tapered optical fiber have been shown to enhance both the single NV center's fluorescence emission and couplingout efficiencies [14][15][16] . Similarly, optical antennas and plasmonic structures have been used to enhance the local light field thus improving the fluorescence efficiency through the Purcell effect, and enhance emission from a single NV defect in diamond 17,18 .Here, we demonstrate a simple method to enhance the excitation efficiency and also fluorescence collection from a micrometer-sized NV color-center rich diamond attached to the end of a sphered optical fiber. This singleport sensor configuration offers flexibility needed for some applications that require precision field-measurements in a non-standard location (e.g. magnetic endoscopy, subcutaneous measurements, remote and inaccessible loca-tions). Our enhancement technique is based on using a matched micro-concave (MC) mirror to a sphered opticfiber end.A diamond micro-crystal is fixed on the sphered tip op...
Fixing a diamond containing a high density of Nitrogen-Vacancy (NV) center ensembles on the apex of a multimode optical fiber (MMF) extends the applications of NV-based endoscope sensors. Replacing the normal MMF with a tapered MMF (MMF-taper) has enhanced the fluorescence (FL) collection efficiency from the diamond and achieved a high spatial resolution NV-based endoscope. The MMF-taper's high FL collection efficiency is the direct result of multiple internal reflections in the tapered region caused by silica, which has a higher refractive index (RI) than the surrounding air. However, for applications involving fluidic environments whose RI is close to or higher than that of the silica, the MMF-taper loses its FL collection significantly. Here, to overcome this challenge, we replaced the MMFtaper with an ultra-high numerical aperture (NA) microstructured optical fiber (MOF) which is tapered, and sealed its air capillaries at the tapered end. Since the end-sealed air capillaries along the tapered MOF (MOF-taper) have isolated the MOF core from the surrounding medium, the core retains its high FL collection and NV excitation efficiency in liquids regardless of their RI values. Such a versatile NV-based endoscope could potentially find broad applications in fluidic environments where many biological processes and chemical reactions occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.