Specialization is a concept based on a broad theoretical framework developed by evolutionary biologists and ecologists. In the past 10 years, numerous studies have reported that – in many contexts – generalist species are “replacing” specialist species. We review recent research on the concept of the ecological niche and species specialization, and conclude that (1) the observed worldwide decline in specialist species is predicted by niche theory, (2) specialist declines cause “functional homogenization” of biodiversity, and (3) such homogenization may be used to measure the impact of disturbance on communities. Homogenization at the community level could alter ecosystem functioning and productivity, as well as result in the deterioration of ecosystem goods and services. We propose community‐level specialization as an indicator of the impact of global changes (habitat and climate disturbances) on biodiversity.
Functional and phylogenetic diversity are increasingly quantified in various fields of ecology and conservation biology. The need to maintain diversity turnover among sites, so-called beta-diversity, has also been raised in theoretical and applied ecology. In this study, we propose the first comprehensive framework for the large-scale mapping of taxonomic, phylogenetic and functional diversity and of their respective turnover. Using high-resolution data on the spatial distribution and abundance of birds at a country scale, we disentangled areas of mismatches and congruencies between biodiversity components. We further revealed unequal representation of each component in protected areas: functional diversity was significantly under-represented whereas taxonomic diversity was significantly over-represented in protected areas. Our results challenge the use of any one diversity component as a surrogate for other components and stress the need to adopt an integrative approach to biodiversity conservation.
Climate changes have profound effects on the distribution of numerous plant and animal species 1-3 . However, whether and how different taxonomic groups are able to track climate changes at large spatial scales is still unclear. Here, we measure and compare the climatic debt accumulated by bird and butterfly communities at a European scale over two decades (1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008). We quantified the yearly change in community composition in response to climate change for 9,490 bird and 2,130 butterfly communities distributed across Europe 4 . We show that changes in community composition are rapid but different between birds and butterflies and equivalent to a 37 and 114 km northward shift in bird and butterfly communities, respectively. We further found that, during the same period, the northward shift in temperature in Europe was even faster, so that the climatic debts of birds and butterflies correspond to a 212 and 135 km lag behind climate. Our results indicate both that birds and butterflies do not keep up with temperature increase and the accumulation of different climatic debts for these groups at national and continental scales.Species are not equally at risk when facing climate change. Several species-specific attributes have been identified as increasing species' vulnerability to climate change, including diets, migratory strategy, main habitat types and ecological specialization [5][6][7] . Moreover, although phenotypic plasticity may enable some species to respond rapidly and effectively to climate change 8,9 , others may suffer from the induced spatial mismatch and temporal mistiming with their resources 10,11 . For instance, species such as great tits and flycatchers have been shown to become desynchronized with their main food supply during the nesting season 12 .However, beyond individual species' fates, climate change should also affect species interactions and the structure of species assemblages within and across different taxonomic groups over large spatial scales [13][14][15] . For instance, ectotherms should be more directly affected by climate warming and taxonomic groups with short generation time should favour faster evolutionary responses to selective pressures induced by climate changes 13 . Yet, whether different taxonomic groups are tracking climate change at the same rate over large areas is still unclear, and methods to routinely assess the mismatch between temperature increases and biodiversity responses at different spatial scales are still missing 16 .Here, we used extensive monitoring data of birds and butterflies distributed across Europe to assess whether, regardless of their species-specific characteristics, organisms belonging to a given group are responding more quickly or more slowly than organisms belonging to another group over large areas. We characterized bird and butterfly communities in 9,490 and 2,130 sample sites respectively by their community temperature index (CTI) for ea...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.