When allocating observations to two populations for estimation or testing, the optimal proportion of the data that should be allocated to the first population, if it exists, often depends on unknown parameters. Adaptive designs have thus been proposed, in which allocation of the next observation is based on an estimate of the optimal proportion computed from the data already gathered. The authors introduce a simple randomized adaptive design and give some of its properties. Applications are given to estimating the difference of two success probabilities, and the difference of two normal means.
DNA microarray represents a powerful tool in biomedical discoveries. Harnessing the potential of this technology depends on the development and appropriate use of data mining and statistical tools. Significant current advances have made microarray data mining more versatile. Researchers are no longer limited to default choices that generate suboptimal results. Conflicting results in repeated experiments can be resolved through attention to the statistical details. In the current dynamic environment, there are many choices and potential pitfalls for researchers who intend to incorporate microarrays as a research tool. This review is intended to provide a simple framework to understand the choices and identify the pitfalls. Specifically, this review article discusses the choice of microarray platform, preprocessing raw data, differential expression and validation, clustering, annotation and functional characterization of genes, and pathway construction in light of emergent concepts and tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.